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1 Introduction

This paper presents a Wiener-Hopf (W-H) solution of wave propagation across a crack where two semi-infinite
floating elastic plates are joined by various transition conditions (see Fig. 1). There has been a steady development
of analytical solutions of floating elastic plates and water waves. A simple case of water-plate interaction problem
is solved in [1] and [4] using the W-H technique. (There are too many papers on the W-H to list them all here.)
A similar technique is used in [3] to solve a plate-plate interaction with an open gap and a rigid joint. In a
slightly different situation, [2] gives analytical solutions of plate-water-plate problem using the residue calculus
technique. A complementary problem, water-plate-water with free edge conditions is solved using the W-H in [7].
Wave scattering by a long crack is studied in [5] using a Green’s function for a floating elastic plate. The family
of problems concerning floating elastic plates, which can be solved analytically, is growing and several of them
have been presented at the past workshops. However, the conditions at the edges of the plates have been usually
assumed to be free. In this paper we exploit the fact that the W-H technique can, with some modifications shown
in [3], incorporate more complex transition conditions than the simple open gap or rigid joint.

Our motivation here is to model the cracks in sea-ice sheets, because wave propagation into the ice field
plays an important role when the ice sheets around the coast of Antarctica are broken up every year. We use a
theoretical model of the ice sheet that assumes ice thickness, mass density and Young’s modulus to be constant.
This model is often used to study the dynamics of ice sheets with fairly homogeneous appearance. We focus on a
relatively long and straight crack in an ice sheet. Such a crack can have a variety of physical properties depending
on how it is formed, for example partially frozen slosh or solidly re-frozen crack. However, the mechanism of wave
propagation across such a crack is not yet well understood.
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Figure 1: Schematic drawing of the crack in an ice sheet.

In order to model varying characteristics of the crack, we introduce theoretical transition conditions using two
springs linking the ice sheets (see Fig. 2). The vertical spring transmits the shear force that is determined by the
displacement difference. The rotational spring transmits the bending moment that is determined by the difference
of the gradient at the edges of the ice sheets.

Figure 2: The rotational and the vertical springs connecting the two ice sheets.

The solutions here are given as an expansion over the modes that exist in ice sheets. The coefficients of
the expansion are linear combination of four constants that must be determined by the transition conditions.
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Although, the W-H technique has been used by several researchers, its strength, which is the simple use of
the transition conditions, has not been exploited. From the transition conditions a system of equations for the
constants can be formulated with a 4×4 matrix and a vector. We therefore focus on the formulation of the matrix
and the vector to study the qualitative behaviour of the solutions.

2 Governing equations

The displacement, w (x, y, t), and the velocity potential of the water, φ (x, y, z, t), satisfy the following system of
equations.

p = D1∇4
x,yw + m1 (wtt + g) , for x < 0,

p = D2∇4
x,yw + m2 (wtt + g) , for x > 0,

wt = φz,
ρφt + ρgw + p = 0,















at z = 0

φz = 0 at z = −H,
∇2

x,y,zφ = 0 in the water.

(2.1)

g, ρ and p are acceleration due to the gravity, mass density of sea water and pressure acted on the surface of the
water respectively. The mass density of each plate is denoted by mi = ρihi (ρi is the mass density of the ice, hi is
the thickness), i = 1, 2 respectively. Di, i = 1, 2 are the flexural rigidity of the ice sheets. We assume that there
exists an incoming plane wave obliquely incident from infinite that is harmonic in time, that is, at x = −∞ we
have i I exp i (λx + ωt), where I is amplitude of the wave (i is there to simplify the calculations in the Wiener-hopf
technique) and the wave number λ is determined by the incident angle of the plane wave to the x-axis. Since the
system of the equations 2.1 are linear with respect to φ (x, y, z, t), we may express the solution as

φ (x, y, z, t) = Re
[

φ (x, z, ω) ei(ky+ωt)
]

where φ (x, z, ω) (or φ (x, z) for simplicity) is the complex function of amplitude of the solution and k denotes the
wave number in the y-axis, i.e., k = λ′ sin θ, λ′ =

√
λ2 + k2 and θ being the incident angle as depicted in Fig. 1.

We scale (or non-dimensionalize) the system of equations given above using characteristic length and charac-
teristic time denoted by li and ti, i = 1, 2 respectively. The subscript i = 1 corresponds to the plate for x < 0
and i = 2 for x > 0 and characteristic length, characteristic time and the ratio of the characteristic lengths are
defined as

li =

(

Di

ρg

)1/4

, ti =

√

li
g

, lr =
l1
l2

.

We here assume that lr < 1, i.e., the plate on the right is more rigid than the other. lr may be zero when x < 0 is
free-surface. If we denote the non-dimensional variables with the bar, then the non-dimensionalized variables of
space and time using l2 are

(x̄, ȳ, z̄) =
1

l2
(x, y, z) , t̄ =

t

t2
.

We omit the bar to avoid the clutter from now.

3 Solutions using the Wiener-Hopf technique

This section shows the solutions of the system of equations 2.1 that are derived using the W-H technique. The
detailed derivation of the solution is given in [3].

We derive scaled version of the reflection and transmission coefficients from the system of equations given by
{

l4r
(

∂2
x − k2

)2 − m1ω
2 + 1

}

φz (x, 0) = ω2φ (x, 0) , x < 0,
{

(

∂2
x − k2

)2 − m2ω
2 + 1

}

φz (x, 0) = ω2φ (x, 0) , x > 0
(3.1)

We apply the Fourier transform to the differential equations of φ in the respective domains x < 0 and x > 0,
which are defined as

Φ+ (α, z) =

∫ ∞

0

φ (x, z) ei αxdx, Φ− (α, z) =

∫ 0

−∞

φ (x, z) ei αxdx (3.2)

where α is the complex variable and Φ± are the complex valued functions. From 3.2 the Fourier transform of φ
int he whole domain is Φ = Φ+ + Φ−. The inverse Fourier transform is then defined as

φ (x, 0) =
1

2π

∫ ∞

−∞

Φ(α) e− i αx dα
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where the integration path on the real axis is indented around the real singularities and may be closed in either
the upper or lower half plane depending whether x < 0 or x > 0.

For x < 0 we close the integral contour in the upper half plane, and put the incident wave back, then we have

φz (x, 0) = i Iei λx −
∑

q∈S1

iF (q) q′R1 (q′)

qK (q)
e− i qx, (3.3)

φ (x, z) =
i I cosh λ′ (z + H)

λ′ sinhλ′H
ei λx −

∑

q∈S1

iF (q)R1 (q′) cosh q′ (z + H)

qK (q) sinh q′H
e− i qx

where λ′ =
√

λ2 + k2 and

F (α) = J (α) − If2 (γ)

(α + λ)K (λ)
, J (α) = d0 + d1α + d2α

2 + d3α
3.

and

f1 (γ) = l4r γ
4 − m1ω

2 + 1 − ω2

γ tanh γH , f2 (γ) = γ4 − m2ω
2 + 1 − ω2

γ tanh γH ,
f2

f1

= K (α)K (−α) , K (α) =
(

∏

q=S1

q′

q+α

)(

∏

q=S2

q+α
q′

)

.

The sets of the modes are defined as

Sj =
{

α ∈ C | fj (γ (α)) = 0, α =
√

γ2 − k2, either Im α > 0 or α > 0} .

We indicate the roots of the dispersion functions, f1 and f2 corresponding to the elements of Sj by the prime, for
example if λ ∈ S1 then λ′ on the γ-plane satisfies f1 (λ′) = 0. Detailed descriptions of the roots are given in [6].

Residue function R1 (q′) of [f1 (γ)]
−1

at γ = q′ is

R1 (q′) =

(

df1(γ)
dγ

∣

∣

∣

γ=q′

)−1

= ω2q′

(5l4
r
q′4+b1)ω2+H((l4r q′5+b1q)2−ω4)

. (3.4)

We used b1 = −m1ω
2 + 1 and f1 (q′) = 0 to simplify the formula. Displacement w (x) can be obtained by

multiplying − i /ω to equation 3.3.
For x > 0, we derive φz (x, 0) then φ (x, z) by closing the integral contour in the lower half plane,

φz (x, 0) = −
∑

q∈S2

iK (q)F (−q) q′R2 (q′)

q
ei qx, (3.5)

φ (x, z) = −
∑

q∈S2

iK (q)F (−q)R2 (q′) cosh q′ (z + H)

q sinh q′H
ei qx,

where R2 is a residue of [f2 (γ)]
−1

and its formula can be obtained by replacing the subscript 1 with 2 and lr with
1 in equation 3.4.

4 Transition conditions

We consider here the case when lr = 1 and the incident angle is zero. Fig. 3 shows the reflection coefficient as a
function of the two spring constants at different incident wave frequencies. There is little reflection of waves when
τ1 and τ2 are large as the transition is very rigid. The equations for the transition conditions depicted in Fig. 2
are

B1w|x=0− = B1w|x=0+ , B2w|x=0− = B2w|x=0+ ,

τ1

(

w|x=0− − w|x=0+

)

= ± B1w|x=0± , τ2

(

wx|x=0− − wx|x=0+

)

= ± B2w|x=0± ,

where τ1 and τ2 are the vertical and the rotational spring constants, respectively. The shear force and the bending
moment are defined as

B1w|x=0+ = wxxx − k2 (2 − ν) wx , B1w|x=0− = l4r
{

wxxx − k2 (2 − ν) wx

}

,

B2w|x=0+ = wxx − k2νw , B2w|x=0− = l4r
(

wxx − k2νw
)

When τ1 → 0 or/and τ2 → 0, the transition conditions are equivalent to a clamped or roller connection, or an
open gap. Similarly, when τ1 → ∞ and τ2 → ∞, the transition conditions become continuously joined. The above
system of equations can be simply written using a matrix and a vector,

T d = v (4.1)
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where d = (d0, d1, d2, d3) (column vector).
At a low frequency range the variation of the transitions conditions makes little difference to the wave propa-

gation. Fig. 4 shows 4 singular values of T . The figures show that the transition matrix stays virtually unchanged
for ω < 0.7 regardless of varying spring constants. Fig. 3 shows that the vertical and the rotational springs are
equally influential to the reflection of the waves. However, the vertical spring induces more rapid variation to the
reflection.
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Figure 3: The reflection coefficients and the spring constants. The axes τ1 and τ2 are in log-scale.
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Figure 4: The singular values of T versus frequency ω for various spring constants. The dotted line is at ω = 0.7.

5 Conclusions

This paper gives an initial attempt at modelling the transition conditions in an ice sheet. The conditions are
reduced to the vertical and the rotational springs. Further studies and field measurements must be conducted to
find the correlation between the theoretical model here and the real transition in an ice sheet. The fact that the
solution by the W-H technique has explicit formulae (invariant to the transition conditions) for the coefficients
of d0, d1, d2, d3 is exploited here to study exclusively the transition conditions. The wave propagation is highly
dependent on the transition conditions. It is shown that a small change in the spring constants results in a large
fluctuation in the reflection of the waves.
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