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1 Introduction

In recent years a number of papers presented at the
Workshops have been concerned with modelling the ef-
fect of waves on large floating structures where bending
effects are important. Other papers have been con-
cerned with the effect of waves on large numbers of
cylindrical vertical rigid columns extending throughout
the water depth. In both cases the motivation stemmed
from the possibility of building massive off-shore run-
ways for aircraft, either freely-floating or supported by
many columns.
In this paper we continue in this vein by considering

the water surface to be completely covered by a freely-
floating thin elastic plate of uniform small thickness. It
is well-known that the linearised equations describing
the vertical displacement of the plate permit solutions
describing long-crested flexural- gravity waves travel-
ling through the plate and decaying with depth into
the water region.
Here we ask what the effect of pinning the plate

at any arbitrary number of points has on a given inci-
dent wave field. Of particular interest will be the forces
required at each point to hold it fixed in the incident
wave field, and the form of the scattered far field.
Before considering this problem the simpler prob-

lem of a thin elastic plate in vacuo pinned at given
points is considered in the presence of an incident wave
field. Although this problem is simpler, it would appear
that few papers have addressed it despite the relevance
to the vibrations of riveted sheets. See for example,
Norris & Vermula (1995).
In both problems, extensive use is made of a Green

function describing a concentrated force at a point on
the plate. Because of the fourth-order differential oper-
ator describing the bending of the plate, both of these
functions have bounded displacements at the point in
question, which enables solutions for scattering by a in-
cident field to be readily found by linear superposition
of the Green functions.
In what follow, we shall present the theory for both

cases but our results will concentrate on the simpler in
vacuo case. Further results for the floating plate over
water will be presented at the Workshop.

2 Formulation and solution

The plate occupies the x − y plane and has a dis-
placement

�
e u(r) exp(−iωt) where ω is the radian fre-

quency, and r = (x, y). Then it is known from Kirch-
hoff thin plate theory that u(r) satisfies

(∇4 − k4)u(r) = 0, −∞ < x, y <∞ (1)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 where k4 = mω2/D.
Here D = Eh2/12(1− ν2) is the bending stiffness, E is
Young’s modulus, h the plate thickness and ν is Pois-
son’s ratio.
A solution of (1) describing a long-crested plane

wave making an angle ψ with the positive x-axis is

ui(r) = exp{ik(x cosψ+y sinψ} = exp{ikr cos(θ−ψ)}
(2)

where x = r cos θ, y = r sin θ. A fundamental Green
function satisfying

(∇4 − k4)g(r; r′) = δ(x− ξ)δ(y − η) = δ(r − r′) (3)

where r = (x, y), r′ = (ξ, η), is

g(r; r′) = C(H0)
(1)(kρ)−H

(1)
0 (ikρ), C = i/8k2 (4)

where ρ = |r − r′| and where H
(1)
0 is the Hankel func-

tion of order zero.A useful alternative formula is

g(r; r′) = C(πi)−1
∫∞

−∞ eik(x−ξ)t

(λ−1e−λk|y−η| − γ−1e−γk|y−η|)dt
(5)

where

λ = (t2 − 1)1/2, t ≥ 1, γ = (t2 + 1)1/2 (6)

and λ = −iκ for t ≤ 1 where κ = (1− t2)1/2.
A crucial property of g(r; r′) is that it is bounded

as r → r′. In fact

g(r; r′) ∼ C +O(ρ ln ρ), ρ→ 0. (7)

Notice that this bounded behaviour for small r does
not arise in the case of the fundamental Green function
for the Helmholtz equation describing small acoustic vi-
brations given by the first term in (4), which is logarith-
mically singular as ρ→ 0. The boundedness described



by (7) enables us to solve a number of interesting prob-
lems. For example, suppose the plate is pinned at the
N points rn = (xn, yn), n = 1, 2 . . . N in the presence
of the incident wave. Then the total displacement u(r)
is given by

u(r) = ui(r) +
N
∑

n=1

Ang(r; rn) (8)

since (1) is satisfied everywhere except at the points rn

and the second term in (8) describes out-going waves
as ρn = |r − rn| → ∞. Also, the requirement

u(rm) = 0, m = 1, 2, . . . N.

is satisfied if the An satisfy

∑∞
n=1 Ang(rm; rn)

= −ui(rm) = − exp{ikrm cos(θm − ψ)},
m = 1, 2, . . . N.

(9)

Again, suppose, in the absence of the incident wave,
one of the points rm is given a unit displacement, the
rest remaining pinned. Then the displacement is given
by

um(r) =

N
∑

n=1

Bmng(r; rn) (10)

where the Bmn satisfy

N
∑

n=1

Bmng(rp; rn) = δmp, p = 1, 2 . . . N (11)

It is straightforward to show that Bmn = Bnm and

An = −
N
∑

m=1

Bmnui(rm), n = 1, 2 . . . N (12)

so that the general scattering problem may be expressed
in terms of the solution to N distinct radiation prob-
lems.
Returning to the scattering problem it is possible

to determine information about the far-field scattered
waves by using the result

g(r; rn) ∼ fn(θ)

(

2

πkr

)
1

2

exp
{

i
(

kr −
π

4

)}

, r →∞

(13)
where

fn(θ) = C exp{−ik(xn cos θ + yn sin θ)}
= C exp{−ikrn cos(θ − θn)}

(14)

and (rn, θn) are the polar co-ordinates of (xn, yn). It
follows from (8) that the scattered wave usc(r) satisfies

usc(r) ∼ D(θ, ψ)

(

2

πkr

)
1

2

exp{i(kr − π/4)} r →∞

(15)
where

D(θ, ψ) = C

N
∑

n=1

Ane
−ikrn cos(θ−θn) (16)

in a notation used in Norris & Wang (1994).
For a given distribution of pinned points rn, n =

1, 2, . . . N , it is a simple matter to compute the N ×N
system (9) for the complex force coefficients An at each
point which are required to hold the points at rest, and
to compute the amplitude and phase of the diffraction
coefficient D(θ, ψ) in a direction θ, for an incident wave
direction ψ from (33).
Figure 1 shows the normalised value of |An| (|An|/8k2).

The first and second plots are for grids of 16 and 25
points respectively spaced ka apart while the third and
fourth plots are for a grid of 16 and 25 points spaced
ka apart plus a small random amount. The random
amount added was choosen from a normal distribution
with mean zero and standard deviation ka/10. It is
clear from this figure that the coeffient |An| (which
may be thought of as the force) has significant spikes
for certain values of ka for symmetric grids but that
these spikes are lost if the symmetry is broken (by the
addition of randomness). Similar results for a circle
are shown in figure 2. The results are similar to those
observed in Evans & Porter (1999)
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Fig. 1: The normalised coefficient |An| for grids of 16
and 25 points evenly spaced ka apart or spaced ka
apart plus a small random amount. The incident angle
is −π/3.

3 A floating elastic plate over wa-

ter

No major conceptual difficulty arises in considering a
thin elastic plate floating on water of depth h, which
again is pinned at points rn, n = 1, 2 . . . N . The equa-
tion for the displacement u(x, y) is (1) as before but
now there is a pressure term on the right-hand-side
due to the water. Thus, u(r) satisfies

(D∇4 −mω2)u(r) = p(r) (17)

where
p(r) = iρωφ− ρgu (18)
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Fig. 2: The normalised coefficient |An| for 8 or 16
points on a circle of radius ka evenly spaced or ran-
domly choosen. The incident angle is −π/3.

from Bernoulli’s equation, where ρ is the water density
and

φ(r, z) =
�
e Φ(r, z)e−iωt (19)

is a harmonic time-independent velocity potential for
the fluid motion, satisfying

(

∇2 +
∂2

∂z2

)

φ(r, z) = 0 (20)

in the water region and the no-flow condition

φz = 0, z = −h. (21)

Elimination of p, u from (17), (18) using the relation

−iωu = φz, z = 0 (22)

gives the set of conditions to be satisfied by φ, namely
(20), (21) and

(β0∇
4 + 1− δ)φz − µφ = 0, z = 0 (23)

where β0 = D/ρg, δ = mω2/ρg, µ = ω2/g.
Solutions of (20),(21), (23) are

exp{ik(x cosψ + y sinψ)} cosh k(z + h) (24)

provided k satisfies

K(k) = (β0k
4 + 1− δ)k sinh kh− µ cosh kh = 0. (25)

This has roots ±kn(n = −2,−1, 0, 1, 2, . . . ) where k0 is
real and positive, k−1, k−2 are complex with imaginary
parts positive, and kn, n ≥ 1 are pure imaginary with
positive imaginary part.
Thus a flexural wave given by the potential

φi(r, z) = exp{ik0(x cosψ + y sinψ)} cosh k0(z + h)
(26)

describes a wave making an angle ψ with the positive
x-axis.
Then the incident wave displacement is

ui(r) = A exp{ik0(x cosψ + y sinψ)} (27)

where
A = iω−1k0 sinh k0h (28)

The solution describing the scattering of this incident
wave by pinned points rn now proceeds as before. Thus
the total potential is

φ(r, z) = φi(r, z) +

N
∑

n=1

CnG(r, z; rn) (29)

where the Cn satisfy

N
∑

n=1

CnGz(rm, 0; rn) = −φiz(rm, 0) m = 1, 2..N

(30)
Here G(r, z; r′) satisfies (20), (21) and (23) with right-
hand-side replaced by δ(r − r′), and is outgoing for
large r.
This Green function has been derived by Fox &

Chung (2002) and may be written

G(r, z; r′) =
i

2

∞
∑

n=−2

cosh kn(z + h)

K ′(kn)
knH

(1)
0 (knρ).

(31)

4 Infinite Array of points

Suppose we consider the scattering of the incident wave
given by an infinite periodic set of pinned points (na, 0), n ∈
Z. Then periodicity dictates that An = eiβnaA0 so that
14 becomes

A0

∞
∑

n=−∞

eiβnag(ma, 0;na, 0) = −eiβma m ∈ Z (32)

and the solution becomes

u(x, y) = ui(x, y) +A0

∞
∑

n=−∞

eiβnag(x, y;na, 0) (33)

Equation (32) simplifies to

−A−1
0 =

∞
∑

n=−∞

e−iβnag(na) (34)

after redefining the summation index and making use
of properties of g. Here g(na) ≡ g(na, 0; 0, 0). We can
use Poisson’s formula

∞
∑

n=−∞

∫ ∞

−∞

einuF (u)du = 2π

∞
∑

n=−∞

F (2nπ) (35)

to express A0 in the form

A0 = −4k
3aS−1(ψ) (36)



where

S(ψ) =
∞
∑

n=−∞

(

1

λn
−
1

γn

)

(37)

and λn = ((βn/k)
2 − 1)

1

2 , γn = ((βn/k)
2 + 1)

1

2 ,

βn = β + 2nπ/a (38)

It is convenient to define scattering angles ψn, n ∈ Z
by

βn = k cosψn (39)

where β0 = β = k cosψ0 = k cosψ. Then provided
|βn| ≤ k or

| cosψn| = |β/k + 2nπ/ka| ≤ 1 (40)

the ψn are real with 0 ≤ ψn ≤ π and λn = −i sinψn.
In this case we say n ∈ N . It is clear that the set N
always has at least one member n = 0 corresponding
to −ψ0 = −ψ the incident wave angle. For n > 0, the
number of scattering angles ψn increases with increas-
ing ka according to (40). We have

S(ψ) =
∑

n∈N

(

i

sinψn
−

1

(1 + cos2 ψn)
1

2

)

+

∞
∑

n=−∞, n/∈N

(

1

λn
−
1

γn

) (41)

and the infinite sum converges absolutely since

λ−1
n − γ−1

n ∼ (ka/2πn)3 as n→∞. (42)

Also the finite sum exists provided sinψm 6= 1 for some
m, or ψm = 0, π where cosψm = cosψ+2mπ/ka. This
situation is termed resonance by Hills & Karp (1965).
To see the effect on the scattered field we note from

(33) that this is

usc(x, y) = A0

∞
∑

n=−∞

eiβnag(x, y;na, 0) (43)

= −
∞
∑

n=−∞

eiβn
x

(

e−λnk|y|

λn
−
e−γn

k|y|

γn

)

/S(ψ)

where Poisson’s formula (35) has been used again. It is
clear from (43) and (37) that usc(ma, 0) = −1,m ∈ Z
as expected.
The scattered field involves plane waves arising from

n ∈ N in (43) only. Thus

usc(x, y) ∼ −iS
−1(ψ)

∑

n∈N

eikr cos(ϑ−sgnyψ
n
)

sinψn
(44)

where x = r cosϑ, y = r sinϑ, which describes a
number of plane waves each making angles ψn with
the positive x-axis.
The amplitude of each wave is (iS(ψ) sinψn)

−1. If
however ψn = 0, π for a value n = m, say, then S(ψ) ∼
i/ sinψn and usc(x, y) ∼ −e

ikx cosψ
n which describes a

wave propagating along the x-axis either towards x =

∞ if ψn = 0 or towards x = −∞ if ψn = π. If ka is
small enough, there is only a single scattered wave

usc(x, y) ∼ −iS−1(ψ)eikx cos(ϑ−sgnyψ
0
)/ sinψ0

∼ −iS−1(ψ)
sinψ

0

(eikx cosψ
0
±iky sinψ

0) y ≶ 0.
(45)

Thus R0 = −iS
−1/ sinψ0 T0 = 1− iS

−1/ sinψ0.
Figure 3 shows the real part of the displacement u

for a wave incident for angles of −π/4 and −π/2 on an
array of points spaced ka = 1.5π and ka = 3π apart.
For the case ka = 1.5π there is a single scattered wave
while for ka = 3π we have three scattered waves and
this can be seen in the results especially for the case
when the wave incident is at −π/2.

Fig. 3: The real part of the displacement for a wave
incident on an array for the incident angles ψ and spac-
ings ka shown.
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