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We study waves interacting with a geometry or wave motion caused by the motion
of a geometry. In the present study, the geometry is represented by an uneven bottom of
arbitrary shape in space and time. The formulation is three dimensional and fully nonlinear.
Various versions of the scheme are tested out. Some parts of the scheme are brought into
analytical form which is suitable for analysis and numerical tests.

We consider irrotational wave motion at the surface of a homogeneous incompressible
fluid over an impermeable bottom. x=(x, y), z, denotes horizontal and vertical coordinates.
z = 0, z = β(x, t) and z = η(x, t) are, respectively, the equations of the still level, of the
impermeable bottom and of the free surface.

We introduce the potential function φ̃(x, t) at the free surface determined by φ̃(x, t) =
φ(x, η(x, t), t). The kinematic and dynamic boundary conditions at y = η(x, t) give

ηt − Vs = 0, (1)

φ̃t + gη +
|∇φ̃|2 − Vs

2 − 2Vs ∇η · ∇φ̃ + |∇η ×∇φ̃|2
2(1 + |∇η|2) = 0, (2)

where, Vs = φn

√

1 + |∇η|2 and φn denotes the normal velocity and ∇ the horizontal gradi-
ent.

The Laplace equation (resulting from incompressibility and irrotationality), together
with the bottom impermeability, is solved exactly by means of a Green function. After
some algebra, this leads to the formulation:

F(Vs) = F(V0) − k tanh(kh) F{ηV0} − ik · F{η∇φ̃}

+k/(1 + eh)[ehF(η(Vs − V0)) + F(ηF
−1[ehF(Vs − V0)])]

+k/(1 + eh)[F(T (φ̃) + T1(φ̃)) + F(N(Vs) + N1(Vs))]

+k/(1 + eh)[2
√

eh/kF(Vb) − 2F(ηF−1[
√

ehF(Vb)]) − F(NB(Vb)]

+k/(1 + eh)[2i
√

eh/kk · F{(β + h)∇φb} − F(T B(φb)] (3)
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where V0 = F−1[ k tanh(kh) F(φ̃)] and eh ≡ e−2kh. Here Vb =∂φ/∂n
√

1+|∇β|2, ~n being
either ~nb, the inward normal of unit length at the bottom surface or ~ns, the outward normal
of unit length at the free surface as illustrated in figure 1.

The kernels of the inner integrals T, T1, N, N1, T
B and NB are quickly decaying in space.

These integrals are evaluated numerically over a very limited region of the x-plane.
If we now consider the case where the bottom is steady, i.e. β(x, t) = β(x). The bottom

surface beeing considered material, the cinematical condition leads to Vb = ∂β/∂t beeing
identically null. In consequence the fourth line in equation (3) vanishes. If moreover the
bottom is considered flat, β(x, t) = −h, the fourth and fifth lines in equation (3) vanish and
one recover the results obtained in Fructus et al. (2005).

Providing now Vb given, one need to compute φb when η, φ̃, Vs are known. To achieve
that, one can write the second Green’s identity at a point of the bottom surface. This leads
to the following expression for φb:

F(φb) = F(φb

1
) + 2ik/k · (√ehF{η∇φ̃} − F{(β + h)∇φb

1
}) − 2

√
ehF(ηVs)

+[F(MB(Vb) + HB(φ̃)) + F(SB(Vs))]

−2ik/k · F{(β + h)∇(φb − φb

1
)} + F(DB(φb)] (4)

where φb

1
= 2F−1[

√
ehF(φ̃) + 1/k(

√
ehF(Vs) − F(Vb))].

As before, The kernels of the inner integrals MB , HB, SB and DB are quickly decaying
in space. These integrals are also evaluated numerically over a very limited region of the
x-plane.

The system of equations {( 3,4 )} as to be solved iterativelly. In practice, few iterations
are required, however.

In addition to the fully nonlinear modelling, we develop several simplified models. The
integrals in equations 3 and 4 are expanded in terms of convolution sums plus some re-
minders. The highest order the convolutions considered, the quickiest the kernel of the
reminders is decaying in space (see Fructus et al. (2005) for more details about this ex-
pansion). The considered extra convolutions can then be expressed analytically in closed
form via Fourier transform. The higher order reminders are then neglected. This allow us
to express an explicit solution for Vs for any given order.

If only the linear terms are considered, this leads to the linear solution:

V1 = V0 + F−1(
2
√

eh

1 + eh

F(Vb)) (5)

If the expansion of the integrals is carried out by considering all convolutions of order
two, this leads to the quadratic explicit formulation for the operator Vs:

V2 = V1 − F
−1[ k tanh(kh)F(ηV1) − ik · F{η∇φ̃} +

2
√

eh

1 + eh

ik · F{(β + h)∇φb

1
}] (6)

Similarly for the potential at the bottom, one obtain:

φb

2
= φb

1
− 2

k
F−1[

√
ehkF(ηV1) + ik · F{(β + h)∇φb

1
}]

+
2

k
F−1[

√
ehF(V2 − V1) +

√
ehik · F{η∇φ̃}] (7)
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Finally, if all cubic convolutions are considered as well, this leads to the following explicit
cubic expression for the operator:

V3 = V2 − F
−1[ k tanh(kh)F(η(V2 − V1))] − F

−1[
k2

2
F(η2V1)]

+F−1[
k

1 + eh

{

F(ηF−1[−ik · F{η∇φ̃}]) + i
eh

2
k · F{η2∇φ̃} − F{η2F−1[

k2

2
φ̃]}

}

]

+F−1[
k

1 + eh

{

k
√

ehF{(β + h)2Vb} + 2i

√
eh

k
k · F{(β + h)∇(φb

2
− φb

1
)}

}

] (8)

This last expression is a kind of Zakharov equation with the effect of a moving bottom
in space and time added. The formulation is explicit and analytic in three dimensions.
Resulting computations using the formulae 8 are then straightforward and requires only
FFT computations, which is very fast.

The validity of those models is then checked by comparison with the fully nonlinear
scheme. Such results for a two dimentional case are presented in the figures 2, 3 and 4. The
figure 2 presents the bottom variation in space and time, while the figures 3 and 4 display
the corresponding wave elevation computed with the four formulations.

Acknowledgment. This work was conducted under the Strategic University Pro-
gramme ‘Modelling of currents and wave for sea structures’, funded by the Research Council
of Norway.
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Figure 1: Sketch of the model
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Figure 2: Time and spatial dependence βt and βx for the bottom elevation where β(x, t) =
βt(t)βx(x).
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Figure 3: Surface elevation due to a sudden rise of the bottom (as defined in figure 2).
surface at t = 100

√

h/g, fully nonlinear (—) and linear solution (- -).
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Figure 4: Blow-up of figure 3 at t = 100
√

h/g.
Computations based on V2 (- · -), based on V3 (· · ·), fully nonlinear (—) and linear solution (- -).
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