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Interaction between steep water waves and fixed or moving bodies at the surface of the
ocean represents continued interest from theoretical, experimental and practical point of
view. Linear and weakly nonlinear wave-body interaction theories are well developed and
implemented in computer codes for industrial use. The next step for the offshore industry is
to include in their routines a set of formulations and codes that take into consideration the
effects of strongly nonlinear waves interacting with geometries. This paper is a contribution
towards that direction. We shall study a fully nonlinear formulation of an interaction between
incoming waves and a vertical cylinder that is circular and is surface piercing. We here study
the case of a fixed, non-moving cylinder. The formulation may be considered as a first step
of a formulation of the flow in an outer domain which is matched to the flow in an inner
domain. In this case more terms (or integrals) enter into the formulation. These integrals do
not represent any new unknowns, however, and contribute thus to more complicated effects
driving an outer flow, without involving essentially more complex analysis.
We study here the simple case of incoming waves in deep water interacting with a ver-

tical, circular cylinder. A potential flow formulation is adopted where the fluid velocity is
determined by the gradient of a velocity potential φ. The elevation of the moving free surface
boundary is determined by η which is a function of the horizontal co-ordinate x = (x1, x2)
and time t. As vertical co-ordinate y is introduced. For convenience we shall assume that the
level y = 0 is above the maximal surface elevation. We shall denote the value of the poten-
tial at the free surface by φ̃(x, t) = φ(x, η(x, t), t). The variables φ̃ and η can be integrated
forward in time once the normal velocity φn at the free surface is known. A relation between
φn and (φ̃, η) is obtained from the solution of the Laplace equation in the fluid domain. A
fully nonlinear formulation in the case when there is no geometry in the fluid (Clamond and
Grue, 2001,§6, Grue, 2002) has recently been fully implemented and tested out, see Fructus
et al. (2005), Clamond et al. (2005).
The equations become somewhat more involved when a geometry is present in the fluid.

Solution of the Laplace equation is obtained using Green’s theorem. The potential φ̃, surface
elevation and normal velocity of the free surface are defined outside the cylinder. We shall
assume that all these quantities are zero in the fraction of the horizontal plane inside the
cylinder.
For a field point that is on the free surface the integral equation formulation gives:

∫

SF

V ′

R
dx′ = 2πφ̃+ IF (φ̃) +

∫

SB

φ′
B

∂

∂n′

1

r
dS + 2πT (φ̃) + 2πN(V ),

(1)

where

IF (φ̃) =

∫

SF

(η′ − η)∇′φ̃′ · ∇′ 1

R
dx′ −

∫

LF

n · [φ̃′(η′ − η)∇
1

R
]dl′, (2)

T (φ̃) =
1

2π

∫

SF

φ̃′[1− (1 +D2)−3/2]∇′ · [(η′ − η)∇′ 1

R
]dx′, (3)

N(V ) =
1

2π

∫

SF

V ′

R
[1− (1 +D2)−1/2]dx′. (4)
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Here, SF denotes the free surface, LF the intersection line between the free surface and the
cylinder, and SB the wetted body surface. Further, V = φn[1 + |∇η|2]1/2. The distance
between a source point and field point is r and the corresponding horizontal distance is
R = |x′ − x|. The difference in elevation at the field point and source point divided by the
horizontal distance is denoted by D = (η′ − η)/R. We note that D → 0 for R → ∞ and
D → ηR for R → 0. (A prime denotes the value at the field point, e.g. η′ = η(x′, t).) In the
case without a body eq. (1) fits with the corresponding equation derived in Clamond and
Grue (2001,§6), Grue (2002).

In the integral over SF we employ that
1
R = F−1{2π

k e
−ik·x′

} where F denotes the Fourier
transform and F−1 inverse transform. In the integral over SB we employ a decomposition:

1

r
=
1

r0
− η

∂

∂y′

1

r0
+
1

R
, (5)

where r0 denotes the value of r with y = η = 0 and is obtained by Fourier transform by

1

r0
= F−1

{
2π

k
e−ik·x′+ky′

}
, y′ < 0. (6)

Here k = (k1, k2) denotes the wavenumber vector, k = |k|, and the level of y = 0 chosen above
any level of the free surface. The contribution to eq. (1) from SB is simplified introducing

ΦB(k) = −
∂

∂K

∫ 2π

0

∫ 0

−∞
φ′
Be

−iK cos(α−θ′)+ky′dy′adθ′, (7)

ΦBL(k) = −
∂

∂K

∫ 2π

0

∫ η0

0
φ′
Be

−iK cos(α−θ′)+ky′dy′adθ′, (8)

ΦBL0(k) = −
∂

∂K

∫ 2π

0

∫ η0

0
φ′
Be

−iK cos(α−θ′)dy′adθ′, (9)

where k = k(cosα, sinα), x′ = a(cos θ′, sin θ′) on the vertical cylinder, where a denotes the
cylinder radius, and K = ka. η0 denotes the elevation along the cylinder. It is sufficient to
evaluate −∞ < φB < 0 to obtain ΦB(k).
The integral over the body and the contribution due to IF (φ̃) in eq. (2) sum up to

IF (φ̃) +

∫

SB

φ′
B

∂

∂n′

1

r
dS = 2πF−1(ΦB)− 2πηF−1(k(F(φ̃) + ΦB))− 2πiF−1

(
k

k
· F(η∇φ̃)

)

+ 2πF(ΦBL − ΦBL0)− 2πηF−1(kΦBL) +

∫

SB

φ′
B

∂

∂n′

1

R
dS (10)

Applying Fourier transform to eq. (1) we obtain

F(V )

k
= F(φ̃) + ΦB − F(ηF−1[kF(φ̃) + kΦB ])− i

k

k
· F(η∇φ̃) + F(N(V ) + T (φ̃) + TB(φB)) (11)

where we have introduced

TB(φB) = F−1(ΦBL − ΦBL0)− ηF−1(kΦBL) +
1

2π

∫

SB

φ′
B

∂

∂n′

1

R
dS (12)

The eq. (11) is linear in V and a decomposition of the various contributions is suitable, i.e.,
V = V1 + V2 + V3 + V4 + V5, where

F(V1)

k
= F(φ̃) + ΦB (13)

F(V2)

k
= −F(ηV1)− i

k

k
· F(η∇φ̃) (14)
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F(V3)

k
= F(T (φ̃)) (15)

F(V4)

k
= F(N(V )) (16)

F(V5)

k
= F(TB(φB)) (17)

For the evaluation point on SB we obtain

2πφB +

∫

SB

φ′
B

∂

∂n′

1

r
dS + I(φ̃) + J (V ) = 0, x

′ on SB (18)

where we have introduced

I(φ̃) =

∫

SF

φ̃′ ∂

∂n′

1

r
dS, J (V ) = −

∫

SF

φ′
n

1

r
dS. (19)

A decomposition is chosen by

1

r
=
1

r0
− η′ ∂

∂y

1

r0
+
1

R2
, (20)

where r0 is the value of r with y
′ = η′ = 0. For the integrals I and J we obtain

I(φ̃) = 2πF−1(eky[−F(φ̃)− i
k

k
· F(η∇φ̃) +

∂

∂K

∫

LF

φ̃′η′e−iK cos(α−θ′)adθ′])

+

∫

SF

dx′φ̃′

[
(−∇′η′ · ∇′)

(
1

r
−
1

r0

)
+

∂

∂y

1

R2

]
(21)

J (V ) = 2πF−1
{(

−
F(V )

k
+ F(ηV )

)
eky

′

}
−

∫

SF

V ′

R2
dS (22)

The equation for φB becomes

φB +
1

2π

∫

SB

φ′
B

∂

∂n′

1

r
dS + F−1{eky

∂

∂K

∫

LF

φ̃′η′e−iK cos(α−θ′)adθ′}

+F−1{eky[−F(φ̃)−
F(V )

k
+ F(ηV )− i

k

k
· F(η∇φ̃)]}

+
1

2π

∫

SF

dx′

{
φ̃′

[
∂

∂y

1

R2
− ∇′η′ · ∇′

(
1

r
−
1

r0

)]
−

V ′

R2

}
= 0 (23)

The relation for F(V )/k is substituted into the equation above. We introduce the operator
L(φB) by

L(φB) = φB +
1

2π

∫

SB

φ′
B

∂

∂n′

1

r
dS + F−1{eky[−ΦB + 2F(ηF−1[kΦB])]}

+F−1{eky
∂

∂K

∫

LF

φ̃′η′e−iK cos(α−θ′)adθ′} (24)

and functions H(φ̃) and H3(V, φB) by

−H(φ̃) = F−1{eky[−2F(φ̃) + 2F(ηF−1[kF(φ̃)])− F(T (φ̃))}

+
1

2π

∫

SF

dx′φ̃′

{
∂

∂y

1

R2
− ∇′η′ · ∇′

(
1

r
−
1

r0

)}
, (25)

−H3(V, φB) = F−1{eky[F(η(V − V1))− F(N(V ))− F(TB(φB))]} −
1

2π

∫

SF

dx′ V
′

R2
.(26)
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The equation for φB may then be written on the form L(φB) = H(φ̃) +H3(V, φB). The two
unknown quantities (V and φB) are obtained by a procedure of successive approximations.
First we decompose the potential at the body by φB = φB,1 + φB,3 where φB,1 is a leading
order contribution and φB,3 a relatively small contribution (of cubic order in appearance).
The quantity ΦB is decomposed accordingly, i.e. ΦB = ΦB,1 + ΦB,3. The first component

(the leading order) of φB is obtained by φB,1 = L−1(H(φ̃)). This is obtained explicitly since

the potential φ̃ at the free surface is a given input to the algoritm to find V and φB. V is
then obtained successively by

F(V1,1)

k
= F(φ̃) + ΦB,1 (27)

F(V2,1)

k
= −F(ηV1,1)− i

k

k
· F(η∇φ̃) (28)

φB,3 = L−1(H3(V1,1 + V2,1, φB,1)) (29)

F(V1,3)

k
= ΦB,3 (30)

F(V2,3)

k
= −F(ηV1,3) (31)

F(V4,1)

k
= F(N(V1,1 + V2,1)) (32)

F(V5,1)

k
= F(TB(φB,1)) (33)

The sum V1,1 + V2,1 + V3 + V4,1 + V5,1 + V1,3 + V2,3 approximates V to a very high accuracy.
Further iterations may improve the accuracy in very steep (nonbreaking) waves.
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