
Figure 1. Slamming on a containership in waves 

(courtesy of American Bureau of Shipping) 
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1. Introduction 

   The occurrence of ship slamming depends on the relative motion and velocity between the 

ship and water waves. This implies that the instantaneous profile of free surface at slamming 

occurrence is important, as figure 1 

shows. When the free-surface profile 

is involved, the three-dimensional 

effects become more significant. 

Despite significant past efforts for 

slamming analysis (e.g. Faltinsen, 

1997, Korobkin, 2000), very limited 

information is known for the three-

dimensional slamming problem. 

Moreover, the effects of instantaneous 

free-surface profile are little  known. In the present study, the three-dimensional impact problem 

in the presence of non-flat free-surface profile is considered. 

 

2. Formulation 

  Let’s consider the fluid flow around a three-dimensional body falling vertically with speed V 

(see Figure 2). An incident wave profile is also taken into account. In the realm of ideal flow, 

let’s decompose the velocity potential ),( tx
r

Φ  and wave elevation ),,( tyxη  into two 

components; incident wave component and slamming component, s.t. 
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where the subscript indicates the incident wave component. Then the corresponding free-surface 

boundary conditions are written as follows: 
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Figure 2. Problem definition 

 

    Two different scales can be considered for two components. For the incident waves, the 

velocity potential and wave elevation are assume that  
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where oV ,
oA , 

oL  are the velocity, amplitude, and characteristic length of incident wave. 

Another possible scaling factor for the incident wave potential is wave steepness. However, 

either factor will lead the same formulation that will be scribed later. For the disturbance due to 

impact, a different scaling can be considered as follows: 
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where L  and T  are the characteristic length and impact time. These scalings lead equation 

(2) and (3) into the following forms: 
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where  
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For impact occurrence in a very short time, let’s  consider the case that 1<<ε  and 

)( 2/1εOFr ≥ . Furthermore, we assume that 
oVV >> , so that εδ << . Then the leading-order 

terms of equation (6) and (7) take the following forms: 
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These conditions are valid on the leading-order term of wave elevation, i.e. ςη += oz . 



Adopting the same scaling, the non-dimensional leading-order elevation becomes 
oo LAz η~)/(~ = . 

It should be noted that there is no assumption for the order of wave slope, k , and 
oLL /  yet.  

In the particular case when the incident wave is not very steep, i.e. 1<<k , the above scale 

observation provides two approaches comparable to the well-known von Karman’s and 

Wagner’s methods. 

Von Karman Type Approach 
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Wagner Type Approach 
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In fact, these results are not much different from the generalized von Karman’s and 

Wagner’s methods. However, solving the boundary value problem in a three-dimensional 

domain is not an easy task since the zero potential condition should be satisfied on the incident 

wave surface. Furthermore, the Wagner’s method (that assumes the zero-potential condition on a 

plane elevated to intersection between the body and free-surface pile-up) is very hard to be 

achieved in a three-dimensional case, especially when an arbitrary body shape is involved. In 

the present case, the zero-potential condition is applied on actual free surface. 

 

3. Numerical Computation 

   The solution algorithm of this study is based on a three-dimensional Rankine panel method 

that adopts a higher-order B-spline basis function (Sclavounos & Nakos, 1988). The boundary 

of the fluid domain is discretized into quadrilateral panels, and the physical variables are 

represented with a higher-order B-spline basis function. The velocity potential adopts the 

representation, 
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where )( ij xB r  is the B-spline basis function of order ),( qp , defined relative to the local panel 

coordinates ),( 21 ξξ .  

Figure 3 shows an example of instantaneous 

solution gr ids distributed on the wetted body 

surface and incident wave surface. Since the 

zero-potential condition is valid on the incident 

wave surface which is not fixed in time, a 

complete regrinding of wave surface as well as 

the wetted body surface is essential at each time 

step. 
Figure 3. Examples of instantaneous grids on a 

falling sphere and incident wave surface. 
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Figure 4. Heave lamming coefficients at 
different 

oLL / : 90-deg. phase 

 

 

 

 

 

 

 

 

 

Figure 5. Effects of wave slopes: 90-deg. 

phase, wavelength/R= 2)2( π .

   Fig.4~6 shows heave slamming 

coefficients for a falling sphere. Slamming 

forces are obtained by added-mass method 

based on the von Karman type approach. The 

significant dependency on wave steepness and 

initial body location relative wave profile is 

obvious. Since the splash-up effect is not 

included in these results, the slamming 

coefficients are close to the asymptotic 

solution (Miloh,1981) when wave profile 

becomes flat. In particular, the initial drop 

position relative to wave profile shows great 

importance.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Effects of body location: 

wavelength 2)2(/ π=R
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