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1 Introduction

The accurate prediction of large amplitude ship mo-
tions in severe seas represents still a major chal-
lenge to naval architects. While three-dimensional
panel methods have reached the state of maturity
in linear seakeeping analysis, the original nonlin-
ear problem, governed by strongly nonlinear bound-
ary conditions, is far from being solved satisfactory.
These nonlinearities are associated with the instan-
taneously wetted surface of the ship and the non-
linearities in the free surface conditions.

Over a period of years, the problem of solving an in-
stantaneous nonlinear boundary value problem has
been circumvented by accounting for the Froude–
Krylov force integrated over the actual wetted sur-
face while treating a linear radiation/diffraction
problem. The negligence of higher order hydrody-
namic effects has been justified by the different or-
ders of magnitude of the Froude–Krylov and the
linear radiation/diffraction forces. However, Huang
and Sclavounos (1998) demonstrated in a study of
heave and pitch motions in steep head seas, that
the nonlinear hydrodynamic effects can attain the
same order of magnitude as the nonlinear geometric
corrections to the Froude–Krylov force.

Another scenario where nonlinear effects become es-
sentially important is the parametric excitation of
large amplitude roll motions in head and follow-
ing seas. In a recent study, Hashimoto and Umeda
(2004) demonstrated that the calculation of the roll
restoring moment in waves based on the Froude–
Krylov assumption leads to an overestimation of
the roll response. The experimental tests confirmed
that the reduction of the initial metracentric hight
in waves of length comparable to the ship length is
overestimated by the Froude–Krylov assumption.

In consequence, a consistent investigation of non-
linear ship motions must consider both, geometric
and hydrodynamic nonlinearities. A promising ap-
proach, with regard to efficiency, is provided by the
so-called 2D+ t theory which has been successfully
applied to the prediction of high-speed craft wave
resistance and deck wetness problems, for a compre-
hensive review see Fontaine and Tulin (2001). Fol-

lowing the lines of slender body theory, the three-
dimensional flow problem is reduced to a num-
ber of two-dimensional problems for the free sur-
face flow perpendicular to the ship forward velocity
U , see Fig. 1. Traditionally, the nonlinear two-
dimensional free surface flow is computed assum-
ing potential flow theory by the Mixed Eulerian–
Lagrangian method (Longuet-Higgins and Cokelet,
1976). Recently, however, Andrillon and Alessan-
drini (2004) have employed a VOF–scheme for vis-
cous flow computations in combination with the
2D + t theory.

Figure 1: Principle of the 2D + t theory.

Until present, most authors have applied the 2D+ t
theory to the forced motion problem with focus on
the wave built-up and jet generation in the bow re-
gion of the ship, cf. Fontaine et al. (2000). We will
consider the free motions of a ship traveling with an
average forward velocity U . With the investigation
of the nonlinear hydrodynamic effects on the cou-
pled heave–pitch–roll motions, we intent to improve
the current mathematical models for the prediction
of large amplitude roll motions in irregular seas.

In our derivation of the boundary conditions, we
assume potential flow, but all kinematic conditions
and the description of the rigid body motions of the
ship are independent of the underlying flow theory,
so that a viscous flow solver can be equally em-
ployed. For the scaling assumptions according to
the slender body theory, we refer to the work of Wu
et al. (2000).
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2 Problem Formulation

The motion of the ship and the wave flow are de-
scribed with respect to the inertial frame of refer-
ence O(x, y, z). The (x, y) plane defines the free wa-
ter surface at rest, and the vertical z-axis is pointing
upwards out of the fluid domain. The x–axis coin-
cides with the average forward direction of the ship,
the vector xG denotes the position of the center of
gravity G, and ω denotes the vector of angular ve-
locity.

The two-dimensional boundary value problems are
solved in cross sections parallel to the (y, z) plane.
The total flow potential Φ is defined by the sum of
φw, the potential of the incident wave, and φ, the
disturbance potential induced by the ship.

2.1 Boundary value problem

According to the slender body theory, the distur-
bance potential φ must satisfy the two-dimensional
Laplace equation

∂2φ

∂y2
+
∂2φ

∂z2
= 0. (1)

The total flow potential Φ must satisfy a zero-flux
condition on the body surface. The corresponding
boundary condition for the disturbance potential φ
yields

φn = (ẋG + ω × r −∇φw) · n, (2)

where n is the outward surface unit normal vector of
the ship, and r is the relative position with respect
to G.

The total potential also has to match the kinematic
and dynamic boundary conditions on the free sur-
face defined by the contour line z = ηw+η. Discard-
ing quadratic terms of the incident wave steepness,
the boundary conditions for the disturbance poten-
tial are obtained

ηt + ηyφy − φz = 0, (3)

φt + 1

2

(

φ2

y + φ2

z

)

+ η̇wφz + gη = 0. (4)

The boundary value is complete, when additional
conditions are applied on the control planes suffi-
ciently far away form the ship (|y| → ∞) and at the
sea bottom. The complete boundary value problem
is illustrated in Figure 2.

The instantaneous two-dimensional boundary value
problem is further decomposed into an initial value
problem for the evolution of the free surface quanti-
ties (φ, η) and a boundary value problem for (φ, φn)
fixed in time. The boundary integral equation is ob-
tained through the use of Green’s theorem with a
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Figure 2: Definition of boundary conditions.

simple source Green function, G(M,P) = ln ‖
−−→
MP‖,

πφ(M) =

∮

φ(P)
∂G

∂nP

(M,P)dΣP

−

∮

∂φ

∂nP

(P)G(M,P)dΣP, (5)

which can be solved for the unknown potential φ
on the hull and the unknown flux φn on the free
surface by a standard boundary element method.

The free surface conditions (3) and (4) are recast in
the Lagrangian sense making use of the substantial
derivative d

dt
= ∂

∂t
+ ∇φ · ∇. We obtain

dη

dt
= φz, (6)

dφ

dt
= 1

2

(

φ2

y + φ2

z

)

− η̇wφz − gη. (7)

With the solution of (5) we may compute all re-
quired right hand side terms of the free surface con-
ditions (6) and (7). The initial value is complete,
when corresponding initial conditions are specified
for η and φ.

2.2 Hydrodynamic forces

The hydrodynamic forces are determined by inte-
gration of the total hydrodynamic pressure in each
cross-section, given by Bernoulli’s equation

p = −ρ
(

Φt + 1

2
∇Φ · ∇Φ + gz

)

. (8)

The total hydrodynamic forces contain components
proportional to the acceleration of the ship, which
gives rise to numerical instabilities during the inte-
gration of the ship motions (Kring and Sclavounos,
1995). Instead of determining φt by a numerical
backwards difference scheme from the potential val-
ues φ at the present and previous time step, we
solve an auxiliary boundary value problem for the
unknown φt on the ship hull. The Neumann bound-
ary condition for the auxiliary problem on the ship
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hull is obtained by taking the local derivative with
respect to time of the kinematic boundary condition
on the ship hull (2)

φt,n = (ẋG + ω × r −∇φw −∇φ) · nt − φw
t,n

+ [ẍG + ω̇ × r + ω × (ω × r)]n. (9)

Reordering the dynamic free surface condition (4)
yields the Dirichlet condition on the free surface for
the auxiliary problem

φt = − 1

2

(

φ2

y + φ2

z

)

− η̇wφz − gη. (10)

The boundary condittions applied on the control
planes and at the bottom line for the auxiliary prob-
lem are similar to those of the original boundary
value problem. Note, that the solution for φt is
obtained at moderate cost, since the influence ma-
trices for the discretization of the integral equation
(5) are the same for the auxiliary problem and have
to be assembled only once per time step.

2.3 Rigid body motions

The Newton-Euler equations of motion with respect
to the generalized coordinates describing the trans-
lations and rotations of the ship

ξ = [ξT ξR]
T

= [xG yG zG ϕ θ ψ]
T
, (11)

are given by

Mξ̈ + k(ξ, ξ̇, t) = q(ξ, ξ̇, ξ̈, t), (12)

with the mass matrix

M =

[

mI3×3 0

0 ΘJR

]

, (13)

where m denotes the total mass and Θ the inertia
tensor of the ship. The Jacobian JR is defined by

ω = JRξ̇R (14)

and

k =

[

0

ΘJ̇Rξ̇R + (JRξ̇) × (ΘJRξ̇R)

]

. (15)

The vector of generalized forces q contains gravita-
tional and hydrodynamic forces. From the bound-
ary condition (9) and the relation

ω̇ = JRξ̈R + J̇Rξ̇R, (16)

it is obvious that the component depending on the
second derivative of the generalized coordinates can
be extracted from the force vector

q(ξ, ξ̇, ξ̈, t) = q̂(ξ, ξ̇, t) − Aξ̈. (17)

Hence, the equations of motion (11) can be recast in
the general form where the force vector is no longer
dependent on the acceleration

(M + A) ξ̈ + k(ξ, ξ̇, t) = q̂(ξ, ξ̇, t). (18)

This guarantees the stability of the numerical in-
tegration. The state variables of the rigid body
motions and the free surface quantities can be inte-
grated satisfactorily by an explicit method, e.g. by
a fourth-order Runge–Kutta or Adam–Bashford–
Moulton scheme.

3 Summary

The application of the 2D + t theory for the pre-
diction of nonlinear ship motions has proved to be
reliable for slender ship hulls like the Wigley hull
in head seas, Fig. 3. For the stability of explicit
numerical integration schemes, it is necessary to ex-
tract the acceleration-dependent components from
the hydrodynamic forces.

The work subject to presentation at the workshop
focusses on the application of the theory to a more
complicated hull shape of a fast Ro–Pax ferry. The
analysis is further extended to the roll and sway
modes in order study the parametric rolling behav-
ior.

Figure 3: Wave pattern generated by Wigley hull
advancing in head seas, Froude number 0.3, wave
steepness 0.18

References

Y. Andrillon and B. Alessandrini. A 2d+t vof fully
coupled formulation for the calculation of break-
ing free surface flow. Journal of Marine Science

and Technology, 8:159–168, 2004.

E. Fontaine, O. M. Faltinsen, and R. Cointe. New
insight into the generation of ship bow waves.
Journal of Fluid Mechanics, 421:15–38, 2000.

3



E. Fontaine and M. P. Tulin. On the prediction
of nonlinear free-surface flows past slender hulls
using 2d+t theory: The evolution of an idea. Ship

Technology Research, 48:56–67, 2001.

H. Hashimoto and N. Umeda. Nonlinear analysis of
parametric rolling in longitudinal and quartering
seas with realistic modeling of the roll–restoring
moment. Journal of Marine Science and Tech-

nology, 9:117–126, 2004.

Y. Huang and P. D. Sclavounos. Nonlinear ship
motions. Journal of Ship Research, 42:120–130,
1998.

D. Kring and P. D. Sclavounos. Numerical stabil-

ity analysis for time-domain ship motion simu-
lations. Journal of Ship Research, 39:313–320,
1995.

M. S. Longuet-Higgins and E. D. Cokelet. The de-
formation of steep surface waves on water, i. a
numerical method of computation. Proceedings

of the Royal Society London, Series A, 350:1–26,
1976.

M. Wu, M. P. Tulin, and E. Fontaine. On the simu-
lation of amplified bow waves induced by motion
in head seas. Journal of Ship Research, 44:290–
299, 2000.

4




