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ABSTRACT

In this paper, an in-depth study of the SPH method is achieved on dedicated free-surface prototype problems.
These rather critical prototype problems are believed to be suitable test cases to get through when building a SPH
model. The goal is to investigate numerical aspects of this method that are little mentioned in literature. In particular,
a specific attention is given to the dynamic part of the solution, i.e. the local hydrodynamic load prediction. The role of
numerical errors in the development of acoustic frequencies in the pressure signals is discussed, as well as the influence
of the choice of the sound velocity. The convergence of this method is heuristically proved on these non-linear prototype
tests, showing at the same time the very satisfactory level of accuracy reached by our model. The advantages and
drawbacks of using a higher-order form of the integral interpolation are also discussed. As well, it is shown that the
same kind of tests are useful to investigate three dimensional versions of SPH solvers.

INTRODUCTION

At the last workshops, the SPH method has been shown to successfully resolve marine and coastal hydrodynamic
problems, such as breaking wave patterns around vessels [1], two-phase flows [2], long-time sloshing evolutions [3],
or water entry and floating-body/wave interaction problems [4]. However, the goal of the present paper is not to
show the abilities of our SPH model in terms of applications, but rather to investigate more in depth various of its
numerical aspects. In almost all the published SPH papers, authors give interest only to the kinematic part of the
solution. Nonetheless, the evaluation of the local hydrodynamic loads is crucial when applying any numerical model
to real applications in the field. As well, regarding the numerical mechanisms involved in the SPH method, people
generally show either simple theoretical studies, or complicated results whose errors are difficult to analyse, and error
factors practically impossible to determinate. Hence, there is a need for ‘prototype’ tests to validate actual numerical
models. These tests must be chosen not too complicated, so as to have reference solutions to compare with and to avoid
mixing too many physical aspects at the time, but chosen to be critical with respect to one or another aspect of the
method. The proposed two- and three-dimensional prototype problems are believed to constitute suitable test cases
to get through when building a SPH code (and more generally any free-surface solver). Through them, it is possible
to discuss of aspects of the SPH method little highlighted in literature, especially: the role of the weak-compressibility
and the numerical errors in the oscillations occurring in SPH pressure signals; the influence of the choice of the sound
velocity; the importance and the effect of some numerical tools applied; the Lagrangian character of the method; and
finally, the advantages and drawbacks of using a higher-order form of the integral interpolation. In the following, the
numerical results shown are obtained through the SPH formulations detailed in [5] and [6].

PROTOTYPE PROBLEM 1: STRETCHING OF A FREE-SURFACE CIRCULAR FLUID PATCH

The first prototype problem considered is the compression on its diameter of an initially circular fluid domain. The
full incompressible-flow analytical solution has been derived, both in two and three dimensions, and is used as reference
solution for our SPH model. The results of this solver are analyzed in terms of kinematics, which is standard, and in
terms of pressure solution, which is more unusual. At the initial instant, the fluid domain € is a two-dimensional fluid
ball of radius R surrounded by the void and subjected to the velocity and pressure fields (Ag is a constant)
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which satisfy the Poisson equation for the pressure V2py = —2pA2. With such an initial condition the domain

preserves an elliptical form during the whole evolution (see left part of figure 1). A convergence study has first been
handled on the kinematic quantities, namely the velocity at given points in the flow, and the conservation of the
kinematic energy. To this purpose, four numbers N of particles have been employed, ranging from 1250 to 80000
particles spread in the fluid domain. The convergence obtained is linear for both quantities, and the mean errors
measured fall below 1% with 20000 particles.

In the simulations, with the coherent pressure/velocity fields which are initially applied (i.e. satisfying the pressure
Poisson equation), it is expected that the obtained pressure solution will be identical to the incompressible analytical
solution (no velocity divergence initially, and no source of divergence then). Nonetheless, some oscillations around the
analytical solution do appear in the SPH result, due to cumulation of numerical errors. Therefore, a distinction must be
made between two aspects of the SPH often mixed together. Actually, this method simulates a weakly-compressible
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Figure 1: Evolution of an initially circular fluid patch. Left: SPH solution at initial and final instants (t Ag = 2-00).
The color contours are those of the nondimensional pressure field p/p A2 R?. The dashed lines represent the analytical
incompressible-flow free surfaces. Right: filtered pressure evolution at the center of the fluid domain.

flow, and therefore provides solutions where both the incompressible and compressible components of the flow are
present. However, the compressibility in SPH is used only in the weak-compressible domain, that is the range where
local Mach numbers are sufficiently low to be able to make the incompressible-flow assumption. And in that sense, the
acoustic oscillations found in the solution provided by the SPH model are not physical. Therefore, they can be filtered
out, easily because they belong to a range of frequencies that is much higher than the one of the incompressible flow
solution. Having filtered out tho-

se frequencies (cf. right plot in fig-

ure 1), the found convergence rate ] __________..-———-—"\
on the local pressure is greater N\
than 1, the final mean error (for i
80000 particles) being of 1-6%.

» Three-dimensional ellipsoi-
dal fluid patch The same kind
of prototype test comparison can
be handled in three dimensions as
well, where again we have derived
the analytical solution. The fig-
ure 2 shows half of the fluid do-
main at the initial and final sta-
ges. The SPH solution (pressure
colored particles) is compared to
the analytical free surface (shown
by two meridians and the equa-
tor). For that run, ~ 1000000
particles are employed. The CPU
cost per time step is ~30s on a
3:2-GHz Xeon single-processor
PC; with 4700 iterations neces-
sary to reach tAg = 1-0. Errors
on the kinematic quantities are
very comparable to those found
in two dimensions for the same
discretization. As well, for the
pressure solution, the same con-
clusions can be drawn as those in
two dimensions.
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Figure 2: Evolution of an initially spherical fluid patch: initial and final (t4y = 1-0)
SPH solutions. The color contours are those of the nondimensional pressure field.
The lines represent the meridians and equator of the analytical incompressible-flow
free surface. The right plot shows a vertical central cut of the fluid domain at the
final stage.

PROTOTYPE PROBLEM 2: ROTATION OF A FREE-SURFACE SQUARE FLUID PATCH

The second prototype problem considered is the constant rotation of an initially squared fluid domain. Comparison
is made to a Boundary Element Model by Greco [7]. This time, the initial fluid domain € is a two-dimensional square



of side L, still surrounded by the void, and subjected initially to the rigid-rotation field
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leading to a compression / expan-
sion evolution naturally keeping
the fluid domain compact. Con-
versely here, the square patch of
fluid is submitted to a centrifugal
force, therefore a negative pres-
sure field which is well-known to bring tensile instability [8]. As well, large aspect ratios in the deformation will
occur, an unphysical numerical fragmentation of the medium becoming a risk, which is avoided using especially the
tensile stability control proposed by Monaghan [9]. The SPH results are globally in nice agreement with the BEM
free-surface solution, even at the late stages of the evolution (see figure 3) when the fluid domain is highly deformed,
mainly composed of four thin bent arms. In particular, the four-symmetricity is nicely kept all along the simulations.
In the BEM solution, a smoothing of the arm tips is visible, which can be safely attributed to the known difficulties
that this kind of models encounters to accurately represent sharp angle evolutions.

Willing again to assess the quality of our solution in
terms of dynamic quantities, the pressure solution has
been examined at point A. Figure 4 shows the pres-
sure time histories calculated there by both the SPH .
and BEM methods. The standard SPH solution os- -0.1F AT
cillates near the incompressible BEM solution, but its I i B
mean evolution is slightly lower. The characteristic fre-
quency of these oscillations can be related to the vi-
bration mode excited, which is theoretically given by
fo=c¢/(v/2L) = 495w at t = 0 (cf. [10]). To better un-

Figure 3: Evolution of an initially square fluid patch. Left: initial velocity (vectors)
and pressure (color contours) fields. Right: comparison of the SPH fluid domain
(particles colored with pressure contours) and BEM free surface (dashed line) at
time tw = 4-0.
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ous oscillations present in the standard SPH pressure
solution do not originate from the weak-compressibility
itself, but from the rather low precision of the SPH inte-
gral interpolation. Therefore, a higher-order SPH model
has been implemented, and actually its pressure solution
shows to be much closer to the BEM solution (cf. figure
4). Using such a higher-order interpolation scheme as regular model could have a number of interests in terms of regu-
larity and accuracy of the solution. Conversely, this kind of solution is more CPU-time consuming (matrix inversions,
searching for the boundary, remeshing, etc.) and less robust (non conservative, completely Lagrangian).

Figure 4: Evolution of an initially square fluid patch: pres-
sure time history at point A. Comparison of the (weakly-
compressible flow) standard and higher-order SPH solutions
to the incompressible-flow BEM solution.

PROTOTYPE PROBLEM 3: VORTICAL EVOLUTION OF A FREE-SURFACE SQUARE FLUID
PATCH

The last test consists in another free-surface square patch of fluid, but this time applying initially a non-uniform
vorticity field instead of the constant one that was given in the last example. The interest of such a change in the forcing
terms is that it will induce a more complex kinematics of the flow, leading not only to large stretching deformations,
but also to distortion of the flow and free-surface reconnection. The initial field is this time
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where 1} is a constant. Again, the initial pressure derives from the resolution of the Poisson equation in (3). This time,
a BEM solver cannot be used since some features of the flow (the reconnection of the free surface in particular) cannot
be handled by such models, at least in their regular form. A more sophisticated solver has therefore been employed,
which is a two-phase incompressible-flow Eulerian FDM (EFDM) model combined with a Level-Set algorithm to
capture the interface, developed by Colicchio [11]. The SPH model is in good agreement with this Level-Set EFDM
solver all along the evolution, as it is visible in figure 5. The resulting flow is very complex and leads to pronounced
deformations of the free surface that breaks and reconnects at ¢ ~ 1-2L/Vj. It can be noticed that both codes nicely
capture this reconnection and then predict very similar symmetric cavities. The little differences found on the details
of the solutions, such as the ends of the arms or the size of the cavities, could be attributed to the presence of the
second phase in the Level-Set EFDM solver.
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Figure 5: Evolution of an initially square fluid patch with vorticity: comparison to a Level-Set EFDM solver at times
tVo/L = 0,04 and 1-5. The SPH particles are colored with the vorticity levels. The dashed-dot lines represent the
free-surface evolution predicted by the Level-Set EFDM solver.

CONCLUSION

In this paper a family of prototype tests has been proposed, believed to be suitable to study in depth various
features of free-surface particle methods (and more generally, of any free-surface solver). Namely, the investigated
tests have been chosen to highlight different characteristics of the SPH method little considered in literature, their
increasing complexity being meant to discuss of more and more critical aspects. For some of these tests, the full
analytical solution has been found; for others comparison has been made to various solvers. The same kind of
tests can also be useful to investigate three-dimensional versions of SPH solvers. Moreover, it has been established
that the high-frequencies found in the local load signals by the standard SPH derive from numerical errors in the
interpolation integral. Those acoustic frequencies are therefore spurious, and do not reflect a physical effect of the
weak-compressibility assumed in the method. Finally, it has been proved that, using adequate numerical tools and
taking care of the dynamic part of the solution, the SPH method is able to get through these critical tests, with a very
satisfactory level of accuracy. In particular, its convergence has been heuristically evidenced.
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