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SUMMARY

One of the most successful techniques for handling
multiple scattering is the so-called T-matrix approach
in which the full linear solution can be computed once
it has been determined how each individual element
of an array scatters an arbitrary incident field. In the
context of water waves this theory was originally for-
mulated in [1] for constant finite depth, and extended
to the deep water case in [2].

Here we propose a very simple approach to mul-
tiple scattering, designed to provide approximations
valid when the wavelength is large compared to the
size of the individual scatterers. The idea is an ex-
tension of a very old method used in acoustics due to
Foldy [3] in which the scatterers are assumed to be-
have like point sources in the long-wave limit. This is
in fact rigorously true for scatterers on whose bound-
ary the velocity potential vanishes, but it is not ap-
propriate for rigid scatterers. For our problem we as-
sume that each scatterer can be modelled as a combi-
nation of a source and a dipole in long waves and then
proceed to handle the multiple scattering in much the
same way as in the T-matrix approach. The scatter-
ing characteristics of each individual scatterer can be
determined by appealing to specific long-wave asymp-
totics, or numerically if necessary. A time depen-
dence of exp(−iωt) is assumed throughout and we
will use K = ω2/g.

The method is applied to the scattering of a plane
wave by a group of horizontal, submerged, circular
cylinders and by an infinite periodic row of identical
vertical cylinders of constant cross-section.

FORMULATION

We take the x, y-plane to be the undisturbed free sur-
face with z pointing vertically upwards and represent
the total field by the harmonic velocity potential

u(r) = uinc(r) +
∑

j

{

DjG0(r − rj ; zj)

+ dj ·G1(r − rj ; zj)
}

, (1)

where the sum is over all scatterers, the j-th scatterer
being centred at rj = (xj , yj, zj), and r = (x, y, z).
The first term inside the summation is a source at rj ;
the strength of the source (given by Dj) is unknown.
The second term is a dipole at rj , the direction and
strength of which (given by dj = (dxj , d

y
j , d

z
j )) are un-

known. For submerged structures we do not include
a source (i.e. Dj = 0).

The field incident on the n-th scatterer is

un(r) = uinc(r) +
∑

j 6=n

{

DjG0(r − rj ; zj)

+ dj · G1(r − rj ; zj)
}

. (2)

Now, let us characterise the scattering properties of
the scatterers by writing

Dn = Bnun(rn) and d
T
n = Cn [vn(rn)]

T
, (3)

where
vn = K−1∇un. (4)

The quantity Cn is a matrix. Thus Dn is propor-
tional to the value of the exciting field at rn and dn

is related to the gradient of the exciting field at rn.
If we substitute from (2) into (3) we get

Dn = Bn

[

uinc(rn) +
∑

j 6=n

{

DjG0(rnj ; zj)

+ dj ·G1(rnj ; zj)
}

]

, (5)

where rnj = rn − rj , and

d
T
n = Cn

[

vinc(rn) +
1

K

∑

j 6=n

∇
(

DjG0(r − rj ; zj)

+ dj ·G1(r − rj ; zj)
)

r=rn

]T

, (6)

where vinc(r) = K−1∇uinc. Equations (5) and (6)
give a system of linear algebraic equations for Dn

and the components of dn. For N scatterers in three
dimensions, there are 4N equations for the 4N scalar
unknowns; in two dimensions, there are 3N equations
in 3N unknowns, though for each scatterer that is
submerged the size of the system reduces by one.

Choice of Bj and Cj

In order to use the method described above, we have
to specify the coefficient Bj and the matrix Cj for
each scatterer. Consider the j-th scatterer and as-
sume, without loss of generality, that it is located at
rj = (0, 0, ζ). For any incident field uinc(r), we have
assumed that the total field near the scatterer is given
by

u(r) ≃ uinc(r) +Bjuinc(0, 0, ζ)G0(r; zj)

+
[

vinc(0, 0, ζ)C
T
j

]

· G1(r; zj). (7)



If the incident field is a plane wave travelling in the
x-direction, then we have

uinc = eiKxeKz, (8)

and

u(r) ≃ eiKxeKz +Bje
Kζ G0(r; zj)

+ eKζ
[

(i, 0, 1)CT
j

]

·G1(r; zj). (9)

This can be compared with specific long-wave cal-
culations such as those derived in [4] using matched
asymptotic expansions.

SUBMERGED HORIZONTAL CYLIN-

DERS

As an application of the theory we will consider a
two-dimensional problem with a plane wave normally
incident on an array of submerged horizontal circu-
lar cylinders in deep water. Since the cylinders are
submerged, there are no source terms. Symmetry
considerations show that the vertical fluid velocity
cannot lead to a horizontal dipole, so Czx = 0. We
also assume that Cxz = 0; though this is an approxi-
mation which is strictly only valid when the depth of
submergence of each cylinder, zn, is much larger than
the cylinder radius, an. It follows from the asymp-
totic analysis in [5], that for a circular cylinder of
radius a and submergence depth f > 0,

Cxx = δ(Ka)2, Czz = −δ(Ka)2, (10)

where

δ = 4
(

(f/a)2 − 1
)

∞
∑

n=1

ns2n

1 − s2n
, (11)

with s = (f/a)−
√

(f/a)2 − 1, is a factor which tends
to one as a/f → 0. For deeply submerged cylinders
we have δ ≈ 1 and different cross-sections can easily
be accommodated by including an appropriate dipole
coefficient in (10) as shown in [4].

Equation (6) is thus

(

dxn
dzn

)

= δn(Kan)
2

(

1 0
0 −1

)

[

(i, 1) eiKxneKzn

+
1

K

∑

j 6=n

∇
(

dj ·G1(r − rj ; zj)
)

r=rn

]T

. (12)

Now

dj · G1(r − rj ; zj) =

dxj (x − xj) + dzj (zj − z)

Kr2
+

∫ ∞

0

⌣
(µ+K)

K(µ−K)
eµ(z+zj)

(dxj sinµ(x− xj) − dzj cosµ(x − xj)) dµ (13)

and if we define

xnj = xn − xj , znj = zn − zj , rnj =
√

x2
nj + z2

nj

and
(

Isnj
Ianj

)

=

∫ ∞

0

⌣
µ(µ+K)

K2(µ−K)
eµ(zn+zj)

(

cosµxnj
sinµxnj

)

dµ

(14)
then (12) becomes

(

dxn
dzn

)

= δn(Kan)
2

[

(

i
−1

)

eiKxneKzn

+
∑

j 6=n

[

1

K2r4nj

(

dxj (z
2
nj − x2

nj) + 2dzjxnjznj
2dxjxnjznj + dzj (x

2
nj − z2

nj)

)

+

(

dxj I
s
nj + dzjI

a
nj

−dxj Ianj + dzj I
s
nj

)

]]

. (15)

For N cylinders this is a 2N × 2N system of equa-
tions for the unknown dxn and dzn. An approximate
solution can be determined if we assume that both
Kan ≪ 1 and an/rnj ≪ 1. We obtain

(

dxn
dzn

)

≃ δn(Kan)
2

[

(

i
−1

)

eiKxneKzn

+
∑

j 6=n

δj(Kaj)
2eiKxjeKzj

[

1

K2r4nj

(

i(z2
nj − x2

nj) − 2xnjznj
2ixnjznj − (x2

nj − z2
nj)

)

+

(

iIsnj − Ianj
−iIanj − Isnj

)

]]

. (16)

The scattered field is

usc =
∑

n

dj ·G1(r − rn; zn) (17)

∼ 2π
∑

n

e±iK(x−xn)eK(z+zn)(±dxn − idzn) (18)

as x→ ±∞. The reflection coefficient is thus

R = 2π
∑

n

eiKxneKzn(−dxn − idzn) (19)

which becomes

R = −4π
∑

n

∑

j 6=n

eiK(xn+xj)eK(zn+zj)

× δnδj(Kajan)
2

r4nj

(

i(z2
nj − x2

nj) − 2xnjznj
)

(20)

if we insert the approximations given by (16). If all
the cylinders are at the same depth zn = ζ and have
the same radius an = a, then

R = 4πiK2a4δ2e2Kζ
∑

n

∑

j 6=n

x−2
nj eiK(xn+xj). (21)



Furthermore, if the wavelength is large compared
with all the other length scales in the problem we
get

R = 4πiK2a4δ2
∑

n

∑

j 6=n

x−2
nj . (22)

This is slightly different to the equivalent expression
in [6], where the factor δ2 is replaced by δδ̃, δ̃ being
a different factor which also tends to 1 as a/ζ → 0.
This discrepancy, which makes little difference to the
numerical results, may well be due to the neglect of
the Cxz terms in the matrix C.

Some preliminary calculations of exciting forces
have been performed based on solving (15) and then
numerically integrating the potential (1) around each
cylinder. These results have been compared with the
full linear solution computed using the multipole ex-
pansion method described in [7]. As expected, the
two approaches agree in the long wave limit.

VERTICAL CYLINDERS

In the case of vertical cylinders of constant cross sec-
tion extending throughout the depth (h say) we can
develop a very similar theory. A depth dependence of
coshk(z+h)/ coshkh, where k the positive root of the
dispersion relation k tanh kh = K, can be factored
out in the usual way and then the reduced potential
(which we still call u) satisfies the Helmholtz equation
(∇2 + k2)u = 0. The definition of vn is changed to
k−1∇un. Infinite depth is treated by setting k = K
with the depth factor as exp(−Kz).

Equation (1) remains the same, but now G0(r) =

H
(1)
0 (kr) and G1(r) = r̂H

(1)
1 (kr), with r = |r| and

r̂ = r/r. Equations (5) and (6) become (dropping
the superscripts on the Hankel functions)

Dn = Bn

[

uinc(rn) +
∑

j 6=n

{

DjH0(krnj)+

dj · r̂nj H1(krnj)
}

]

(23)

and

d
T
n = Cn

[

vinc(rn) +
∑

j 6=n

{H1(krnj)

krnj
dj

− r̂nj (dj · r̂nj)H2(krnj) −Dj r̂nj H1(krnj)
}]T

.

(24)

Standard low frequency approximations show that for
circular cylinders

Bj = − 1
4 iπ(kaj)

2, Cj = −2BjI, (25)

where I is the identity matrix. Equivalent quantities
can easily be determined for cylinders of arbitrary
cross-section. For cylinders with a cross-section that

is symmetric with respect to both the x- and y-axes
the matrix C will be diagonal and we will make this
assumption here.

As an example, we consider the scattering of a
plane wave

uinc = ei(βx+αy), (26)

where α = k sinψ and β = k cosψ, by an infinite
periodic row of identical cylinders. The scatterers
are located at r = rm for m = 0,±1,±2, . . ., where
r = (x, y), rm = (ms, 0) and s is the spacing. We
will use polar coordinates (rm, θm) centred at the
m-th scatterer and defined by x − ms = rm cos θm,
y = rm sin θm. In terms of (rm, θm), we have

uinc = Imeikrm cos(θm−ψ) with Im = eiβms. (27)

The representation (1) becomes

u(r) = uinc(r) +
∑

j

{

DjH0(krj)

+ (dxj cos θj + dyj sin θj)H1(krj)
}

. (28)

As uinc(ns, 0) = In, the scalar system (23) becomes

Dn = B
[

In +
∑

j 6=n

{

DjH0(ks|n− j|)

+ dxjH1(ks|n− j|) sgn(n− j)
}

]

. (29)

Note that r̂nj = (1, 0) for n > j and r̂nj = (−1, 0) for
n < j. The vector system (24) reduces to two scalar
systems. They are

Cxxd
x
n = iIn cosψ +

∑

j 6=n

{

dxjH
′
1(ks|n− j|)

−DjH1(ks|n− j|) sgn(n− j)
}

(30)

and

Cyyd
y
n = iIn sinψ +

∑

j 6=n

dyj
H1(ks|n− j|)
ks|n− j| . (31)

The periodicity of the geometry and the quasi-
periodicity of the incident plane wave imply

Dj = IjD0, dxj = Ijd
x
0 , dyj = Ijd

y
0 . (32)

When these relations are used in (29), (30)and (31)
we obtain a coupled system for D0 and dx0 , represent-
ing the component of the solution which is symmetric
with respect to the x-axis, and a separate equation
for the antisymmetric component dy0 . The solutions
are

D0 =
{

Cxx − 1
2 (σ0 − σ2) + iσ1 cosψ

}

/∆,

dx0 =
{

−σ1 + (B−1 − σ0)i cosψ
}

/∆, (33)

dy0 = i sinψ
{

Cyy − 1
2 (σ0 + σ2)

}−1
,



where ∆ = (B−1 − σ0)[Cxx − 1
2 (σ0 − σ2)] + σ2

1 , and

σp(ψ) =

∞
∑

j=1

(I−j + (−1)pIj)Hp(kjs). (34)

The efficient computation of these sums is non-trivial,
but integral representations for σp exist which greatly
facilitate the process. If we define

S±
n =

∞
∑

j=1

I±jHn(kjs) (35)

so that σn = (−1)nS+
n + S−

n , then

S±
n = − i

π

∫

C

e−in arccos t

γ(eksγ∓iβs − 1)
dt, (36)

where the contour C lies on the real axis but is in-
dented above the poles for which t < 0 and below
those for which t > 0. Here γ(t) is defined for real t
by

γ(t) =

{

−i
√

1 − t2, |t| < 1,√
t2 − 1, |t| > 1.

(37)

and for t ∈ C we have branch cuts from 1 to 1 + i∞
and from −1 to −1 − i∞.

From (28) and (32), we obtain the representation

u(r) = uinc(r) +
∑

j

Ij
{

D0H0(krj)

+ (dx0 cos θj + dy0 sin θj)H1(krj)
}

. (38)

We shall evaluate this expression in the far field in
order to determine the reflection and transmission
coefficients for the problem. First, we define the scat-
tering angles

ψm = arccos (βm/k) with βm = β+2mπ/s. (39)

If |βm| < k, we write m ∈ M and then 0 < ψm < π.
Using integral representations for the Hankel func-
tions in (38) and then applying the Poisson summa-
tion formula, we find that

u = uinc + 2
∑

m

eikr cos (θ−sgn(y)ψm)

ks sinψm

×
{

D0 − idx0 cosψm − i sgn(y) dy0 sinψm
}

. (40)

For those m for which |βm/k| > 1, we have
ik sinψm = −

√

β2
m − k2. Thus, the terms in the

sum for these values of m decay rapidly as |y| → ∞.
Hence, the far field involves only those m for which
m ∈ M. As we are interested in long waves we can

assume that ks < π in which case M = {0} and
we have just one reflected and one transmitted wave,
with reflection and transmission coefficients given by

R =
2

ks sinψ

{

D0 − idx0 cosψ + idy0 sinψ
}

, (41)

T = 1 +
2

ks sinψ

{

D0 − idx0 cosψ − idy0 sinψ
}

. (42)

DISCUSSION

Calculations based on this long-wave multiple scat-
tering theory will be presented at the workshop for
the two problems considered above. Comparisons will
be made with the full linear solution in each case.
We will also discuss the three-dimensional water wave
problem involving an array of floating hemispheres.
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