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1 Introduction

In the linearized approximation, the problem of diffraction by bodies of finite size in a sea of constant depth
can now be treated by a variety of methods. Refraction by slowly varying depth can also be handled by the
classical ray approximation. For combined refraction and diffraction, the mild-slope approximation (MSE)
by Berkhoff [1] is a powerful tool which reduces the computation of 3D problem involving both refraction
and diffraction to 2D, and can be efficiently solved by, e.g., the hybrid element method of Chen & Mei [4].
The linearized MSE has been extended by Chamberlain & Porter [2] to include both first- and second-order
terms in the seabed slope. For still steeper bed slopes Massel [6] and Porter & Staziker [7] have shown that
better accuracy can be achieved by including evanescent modes.

For waves of finite amplitude, the second-order theory for a simple vertical cylinder on a sea of constant
depth has been a challenge to theoreticians for a long time. A complete theory was carried out only in 1989
by Kim and Yue [5], using the boundary integral equation method and in 1992 by Chau and Eatok-Taylor
[3], using eigenfunction expansions and a three-dimensional Green’s function.

In this paper we report our recent progress on second-order diffraction of bodies on slowly varying
depth, for monochromatic incident waves. The mild-slope equation is first extended to second order in wave
steepness, and the method of solutions is then described. Sample results are then discussed. We shall first
show that for the limiting case of diffraction by a vertical circular cylinder on a horizontal seabed, this
method gives the same results as those of Kim & Yue [5] and Eatok-Taylor [3], hence is equivalent to their
methods. New results involving a circular shoal, with and without a harbor behind a coastline, are presented.
Further extensions for random waves are reported in a companion paper.

2 Second-order mild-slope approximation

By including only the propagating mode but the first two orders of bed slope (O(µ) = ∇h/kh � 1) the
first-order result is of course the the extended MSE of Chamberlain & Porter [2]. The numerical solution
can be carried out by the hybrid-element method of Chen & Mei [4].

At the second order in nonlinearity, it is now necessary to add evanescent modes. We let the second-order
potential be of the form

ψ = − ig

2ω

∞∑
m=0

ξm
cosκm(z + h)

cosκmh
, (2.1)

where κ0 is the imaginary root, corresponding to the propagating mode, of

−4ω2 = gκm tanκmh (2.2)

while κm,m = 1, 2, 3, ... are the real roots, corresponding to the evanescent modes. The first root κ0 is
imaginary, corresponding to the propagating mode. This expansion was used by Porter and Staziker [7] to
extend the realm of the linearized theory for steeper bed slope. It is easy to find that ξm are governed by
the coupled matrix PDE with forcing :

∞∑
�=0

{∇ · (Am�∇ξ�) +Bm�∇h · ∇ξ� + Cm�ξl} = −2iωFm (2.3)



where Fm arises from quadratic products of the first order terms. In the special case of constant depth, the
matrices on the left are diagonal and the equations are uncoupled.

3 Strategy of solution

For coastal waters where only the effects of local topography is of major concern, the far field is often
approximated by an infinite (or semi-infinite) sea of constant depth. With this model, the hybrid element
method originally devised for linearized wave problems [4], can be extended to the nonlinear problems here.
Accordingly let us divide the fluid domain into two regions : the near field ΩA in which the bathymetry and
coastal boundary are complex, and the far field ΩF where the depth is constant and the coastline straight.
The two fields are separated by a semi circle ∂A of radius r = a. Within ΩA, discrete solutions will be
sought via two-dimensional finite elements. Within ΩF , the solution will be represented analytically as
eigen-function expansions. The unknown nodal coefficients in ΩA and the expansion coefficients in ΩF will
be found together by Galerkin method, subject to the following matching conditions at r = a :

(ξl)ΩA
= (ξl)ΩF

, r = a (3.4)

(
∂ξl
∂r

)
ΩA

=
(
∂ξl
∂r

)
ΩF

, r = a (on CA) (3.5)

where (.)ΩA denotes the solution in ΩA, (.)ΩF denotes the solution in ΩF , and ∂A is the border line between
ΩA and ΩF where r = a.

In the far field ΩF of constant sea depth, the solution is obtained analytically as follows. First we
decompose the forcing function into two parts

F = P + S (3.6)

where P represents the terms arising from quadratic interaction of the first-order progressive waves (incident
and reflected (from the coast)), and S represents terms from interactions of the first-order progressive waves
and scattered waves as well as the self-intreraction of the scattered waves. By introducing the following
decomposition,

(ξ�)ΩF = (ξP
� )ΩF + (ξS

� )ΩF + (ξf
� )ΩF , (3.7)

we first solve separately for (ξP
� )ΩF and (ξS

� )ΩF as the responses to the inhomogeneous equations with the
forcing terms P and S respectively. For the latter two-dimensional Green’s functions are used. Care is
taken that the weak radiation condition is satisfied by (ξS

� )ΩF at infinity. The part (ξf
� )ΩF is then the free

waves satisfying the homogeneous equation and inhomogeneous boundary condition on r = a so as to ensure
continuity of pressure and flux with the finite-element solution in the near-field.

4 Sample numerical results

As a benchmark for later numerical solutions involving variable depth, we have worked out a new analytical
solution for a semi-circular peninsula along a straight coast and in constant depth. In this case no finite
elements are needed and ξf

l = 0, for all l. Our theory is exact. Figure 1 shows the second-order contributions
to the free-surface displacement along a circular peninsula at r = a, with 225◦ incidence. Variations of the
dimensionless amplitudes of the zeroth and second harmonic, η(0)

2,2 , η
(1)
2,2 due to the first-order motion, η(2)

2,2

due to Φ2 as well as the sum of η(1)
2,2 + η

(2)
2,2 , are shown in Figure 1.

For a full circular cylinder in an open sea, the exact solutions have been found before found numerically
by Kim & Yue [5] using boundary integral equations, and analytically by Chau and Eatok Taylor [3]. As a
check for the correctness of our theory, we have shown that in the limit of 0◦ angle of incidence, our solution
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Figure 1: Dimensionless amplitudes of the second-order contribution to the free surface displacement along
a circular peninsula with 225◦ incidence. Solid line : mean setup η

(1)
2,0/(A

2/a) (zeroth harmonic component

due to Φ1). Chain line: second-harmonic component due to Φ1, |η(1)
2,2|/(A2/2a). Thin dashed line: second-

harmonic component due to Φ2, |η(2)
2,2 |/(A2/2a). Thick dashed line: sum of second-harmonic components

due to Φ1 + Φ2, |η(2)
2,2 + η

(1)
2,2|/(A2/2a) .The input parameters are r/a = 1, h/a = 1 and ka = 1.

agrees with theirs. Unlike the 3D mathematics in these cited references, our treatment is an uncoupled set
of 2D problems, a characteristic advantage of the mild-slope approximation.

In the second example we consider a semi circular shoal with one diameter coinciding with a straight
coast. The depth profile of the shoal is given in polar coordinate by

h =

{
20m, r ≤ 30m
30 − 10 cos

[
π

270 (r − 30)
]
m, 30m ≤ r ≤ 300m

(4.8)

Sample snapshots results for first-order and second-order surface displacements are shown in Figure 2 (a)
and (b). For clarity, the two figures are shown in different scales.

Our last example is a square harbor open to a semi circular shoal. The incident wave frequency is chosen
to coincide with a resonance mode. It happens that the secon harminc frequency is also close to the natural
frequency of a higher mode.
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Figure 2: Sample surface contours at t = T/8 of (a) first order, first harmonic and (b)second order, second
harmonic due to normally incident waves over a circular shoal. The input frequency is ω = 2π/T = 0.7.
Outer radius of shoal = 300 m. Depth outside the shoal = 40 m. Depth = 20 m at r ≤ 30 m. The results are
normalized by A and kA2 with k = 0.052, separately. Figure (b) is magnified five times relative to Figure(a).
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Figure 3: Sample surface contours at t = T/8 of (a) first order, first harmonic (b) second order, second
harmonic due to normally incident waves with input frequency ω = 2π/T = 0.7. There is a semi-circular
shoal outside the harbor. Outer radius of shoal = 300 m. Depth outside the shoal = 40 m. Depth at the
harbor entrance and inside the harbor = 20 m. The results are normalized by A and kA2 with k = 0.052,
separately. Second-order contours outside the semi-circular shoal,are not shown. Figure (b) is magnified five
times relative to Figure(a).
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