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1. Introduction

The potential-flow representation for diffraction-radiation by a ship advancing (at speed U ) through
time-harmonic waves (with frequency ω), in uniform finite water depth, that is given in [1] is considered.

This flow representation defines the velocity potential φ̃ at a field point x̃ in a flow domain as

4π φ̃ = φ̃R+ i φ̃W (1a)

where φ̃R and φ̃W represent local-flow and wave components associated with the simple Green function

4πG = GR+ i GW (1b)

given in [2]. The local component φ̃R is considered here. This component is defined in [1] as

φ̃ R = ˜ψ R+ χ̃R (2)

with

˜ψ R =

∫

ΣB

dAGR n ·∇φ −
∫

Σ0

dxdy GR(φz + F 2 φxx − f2φ + i τ̂ φx) (3a)

χ̃R =

∫

ΣB

dAAR
B −

∫

ΣD

dxdyAR
D +

∫

Σ0

dxdy aR
0 +

∫

Γ

dL(aR
Γ + F 2 GRtyφx) (3b)

Here, ΣD represents the sea floor (assumed to be a rigid horizontal wall), ΣB stands for the mean
wetted hull of the ship (or more generally, a geometrical surface that surrounds the ship hull), Σ0 is the
portion of the mean free surface (taken as the plane z = 0) located outside the body surface ΣB , and
Γ is the intersection curve between the surfaces ΣB and Σ0 .

The amplitude functions AR
B , AR

D , aR
0 and aR

Γ in (3b) are defined in [1] as

AR
B =

GR

1+ r3/` 3
·
(
n×∇φ +

3 r n×X

` 3 + r3
φ

)
− r3φ n ·∇GR

` 3 + r3
(4a)

AR
D =

r3GR
z φ

` 3 + r3
+

(GR )z
x

1+ r3/` 3

(
φx +

3 rXφ

` 3 + r3

)
+

(GR )z
y

1+ r3/` 3

(
φy +

3 rY φ

` 3 + r3

)
(4b)

aR
0 =

r3πRφ

` 3 + r3
+

(πR )zz
x

1+ r3/` 3

(
φx +

3 rXφ

` 3 + r3

)
+

(πR )zz
y

1+ r3/` 3

(
φy +

3 rY φ

` 3 + r3

)
(4c)

aR
Γ = f2φ

ty (GR )zz
x − tx(GR )zz

y

1+ r3/` 3
− (F 2GR

x − iτ̂ GR )
r3 tyφ

` 3 + r3

−
(F 2GR

x − i τ̂ GR )zz
y

1+ r3/` 3

(
t ·∇φ +

3 r t ·X
` 3 + r3

φ

)
(4d)

n = (nx, ny, nz ) in (4a) stands for a unit vector that is normal to the body surface ΣB and points
into the flow domain; t = ( tx, ty ,0 ) in (4d) is a unit vector tangent to the boundary curve Γ , which is
oriented clockwise (looking down); f = ω

√
L/g is the nondimensional wave frequency; F = U/

√
gL is

the Froude number; and τ̂ = 2fF . Furthermore, GR in (4a) and πR in (4c) are defined as

GR = [ (GR)z
y ,−(GR)z

x , 0 ] πR = GR
z + F 2 GR

xx − f2 GR − i τ̂ GR
x (5)

and a subscript/superscript attached to GR or πR means differentiation/integration, respectively. In
(4), r represents the distance between a point x̃ in the flow domain and a point x at the boundary
surface ΣD ∪ Σ0 ∪ ΣB , i.e.

r =
√

X ·X with X = (X,Y,Z ) = x̃ − x = ( x̃− x , ỹ − y , z̃ − z ) (6)

Finally, ` is a positive real number that controls the transition between the classical and weakly-singular
potential representations that are given in [3] and are contained in the generalized representation (1a),
given in [1] and considered here.



2. Local components in Green function and related functions

The local component GR in (1b) is chosen here as that given in [2] . This local component is
defined by four elementary free-space Rankine sources that account for the dominant terms in both the
nearfield and farfield asymptotic approximations to the non-oscillatory local-flow component contained
in the Green function associated with wave diffraction-radiation with forward speed (and the special
cases corresponding to U = 0 or ω = 0). Specifically, the local Rankine component GR is chosen here as

GR = −1/r + 1/r∗ − 2/rF + 2/rFf (7)

where r is given by (6), and r∗ , rF , rFf are defined as

r∗ =
√

X∗ ·X∗ X∗ = (X, Y, Z∗ ) Z∗ = z̃ + z

rF =
√

XF ·XF XF = (X, Y, ZF ) ZF = Z∗ −F 2

rFf =
√

XFf ·XFf XFf = (X, Y, ZFf ) ZFf = ZF −1/f2

(8a)

with X and Y given by (6). Define

rC =
√

XC ·XC XC = (X, Y, ZC ) ZC = Z∗ −C2 (8b)

Thus, r∗ , rF , r
F f

correspond to C2 equal to 0 , F 2, F 2+1/f2, respectively.

Expressions (6) yield
{

(1/r)zz
x

(1/r)zz
y

}
=

1

r + |Z |

{
X

Y

}
(1/r)zz

xy =
X Y/r

(r + |Z |)2 (9a)

(1/r)z = −sign(Z) ln(r + |Z |)

{
(1/r)z

x

(1/r)z
y

}
=

sign(Z)

r + |Z |
1

r

{
X

Y

}
(9b)

Similarly, (8) yield
{

(1/rC )zz
x

(1/rC )zz
y

}
=

1

rC + |ZC |

{
X

Y

}
(1/rC )zz

xy =
X Y/rC

(rC + |ZC |)2
(10a)

(1/rC )z = sign(ZC) ln(rC + |ZC |)

{
(1/rC )z

x

(1/rC )z
y

}
=

− sign(ZC)

rC + |ZC |
1

rC

{
X

Y

}
(10b)

Expressions (7), (9), (10) and (5) yield
{

(GR)z
x

(GR)z
y

}
= B̃2

{
X

Y

}
GR = B̃2 (Y,−X, 0) (11)

where B̃2 is defined below by (17) with (19d) and (19e). Expressions (11) yield

GR · (n×∇φ) = B̃2 [Y (n×∇φ)x −X(n×∇φ)y ] (12a)

GR · (n×X) = B̃2 [(nxX+ ny Y )Z − nz(X2+Y 2)] (12b)

Expressions (7), (6) and (8) yield

GR
z = −B2 n ·∇GR = −(nxX+ ny Y )B3 − nzB2 (12c)

where B2 and B3 are defined by (17) with (19b), (19d) and (19e).

At the free-surface plane z = 0 , expressions (6)–(10) yield

GR = −2R1 GR
x = −2XR3

{
(GR)zz

x

(GR)zz
y

}
= −2R̃1

{
X

Y

}
(GR)zz

xy = −2XYR̃3

GR
xx = 2(R3 − 3X2R5) (GR)zz

xx = 2(R̃1 −X2R̃3)

(13)

(GR)zz
xxx = 2(3R̃3 −X2R̃5)X (GR)zz

xxy = 2(R̃3 −X2R̃5)Y

GR
z = 2(R ∗

2 −R2)

{
(GR)z

x

(GR)z
y

}
= 2(R̃ ∗

2 − R̃2)

{
X

Y

}



where R1 , R̃1 , R3 , R̃3 , R5 , R̃5 , R2 , R̃2 , R ∗
2 , R̃ ∗

2 are defined by (19). Finally, (5) and (13) yield

πR = 2P1 (πR)zz
y = 2YP̃1 (πR)zz

x = 2(XP̃1 + P̃2) (14)

with P1 , P̃1 and P̃2 given by (18).

3. Local component in generalized potential-flow representation

Expressions (3) for the potentials ˜ψ R and χ̃R, at a flow-field point x̃ , in the representation (2) of

the local-flow potential φ̃R in the local/wave decomposition (1a) yield

˜ψ R =

∫

ΣB

dA
(
−1

r
+

1

r∗
− 2R1

)
n ·∇φ + 2

∫

Σ0

dxdy R1(φz + F 2 φxx − f2φ + i τ̂ φx) (15a)

χ̃ R =

∫

ΣB

dA AR
B −

∫

ΣD

dxdyAR
D + 2

∫

Σ0

dxdy AR
0 + 2

∫

Γ

dL (AR
Γ −F 2R1t

yφx) (15b)

One has R1 = 1/rF −1/rF f in (15a), as given by (19a), and AR
0 = aR

0 /2 and AR
Γ = aR

Γ /2 in (15b).
Expressions (4) and (11)–(14) show that the functions AR

B , AR
D , AR

0 and AR
Γ in (15b) are given by

AR
B =

[
(Xnx+Y ny )

(
3 Z rB̃2

1+ r3/` 3
+ r3B3

)
− nz

(
3(X2+Y 2) rB̃2

1+ r3/` 3
− r3B2

)]
φ

` 3 + r3

+ B̃2
Y (n×∇φ)x −X(n×∇φ)y

1+ r3/` 3
(16a)

AR
D =

(
3(X2+Y 2) rB̃2

1+ r3/` 3
− r3B2

)
φ

` 3 + r3
+ B̃2

Xφx +Y φy

1+ r3/` 3
(16b)

AR
0 =

r3P1 φ

` 3 + r3
+

XP̃1 + P̃2

1+ r3/` 3

(
φx +

3 rXφ

` 3 + r3

)
+

YP̃1

1+ r3/` 3

(
φy +

3 rY φ

` 3 + r3

)
(16c)

AR
Γ = f2R̃1

Y tx−Xty

1+ r3/` 3
φ +

F 2XR3 − iτ̂ R1

` 3 + r3
r3 ty φ

+
F 2XR̃3 − iτ̂ R̃1

1+ r3/` 3
Y

(
t ·∇φ + 3 r

Xtx +Y ty

` 3 + r3
φ

)
(16d)

X,Y,Z and r , r∗ , rF , r
Ff

are given by (6) and (8a). The functions B̃2 ,B2 and B3 in (16a) and (16b)
are defined as

B̃2 =
1

r

sign(−Z)

r + |Z | + R̃ ∗
2 − 2R̃2 B2 =

Z

r 3
−R ∗

2 + 2R2 B3 =
1

r 3
− 1

r 3
∗

+ 2R3 (17)

with (19e), (19d) and (19b). The functions P1 , P̃1 , P̃2 in (16c) are defined as

P1 = f2R1 + F 2(R3− 3X2R5) + iτ̂ XR3 +R ∗
2 −R2

P̃1 = f2R̃1 + F 2(R̃3−X2R̃5) + i τ̂ XR̃3 + R̃ ∗
2 − R̃2 (18)

P̃2 = 2F 2XR̃3 − iτ̂ R̃1

The functions R1 , R̃1 ,R3 , R̃3 ,R5 , R̃5 ,R2 , R̃2 ,R ∗
2 , R̃ ∗

2 in (16d), (17) and (18) are given by

R1 =
1

rF

− 1

r
F f

R̃1 =
1

rF + |ZF |
− 1

r
Ff

+ |ZFf |
(19a)

R3 =
1

r 3
F

− 1

r 3
F f

R̃3 =
1

rF

1

(rF + |ZF |)2
− 1

r
F f

1

(r
F f

+ |ZFf |)2
(19b)

R5 =
1

r 5
F

− 1

r 5
F f

R̃5 =
1

r 3
F

3 rF + |ZF |
(rF + |ZF |)3

− 1

r 3
Ff

3 rFf + |ZFf |
(rFf + |ZFf |)3

(19c)

R2 =
−ZF

r 3
F

− −ZFf

r 3
Ff

R̃2 =
1

rF

sign(−ZF )

rF + |ZF |
− 1

rFf

sign(−ZFf)

rFf + |ZFf |
(19d)

R ∗
2 =

−Z∗

r 3
∗

R̃ ∗
2 =

1

r∗

sign(−Z∗)

r∗ + |Z∗|
(19e)



4. Conclusion

The generalized flow representation for diffraction-radiation by a ship advancing through time-
harmonic waves, in uniform finite water depth, given in [1] defines the velocity potential φ̃ at a field point

x̃ in the flow domain as the sum of a local component φ̃ R and a wave component φ̃W, in accordance
with (1a), that are associated with the corresponding decomposition (1b) of the simple Green function

given in [2]. The local potential φ̃ R in the local/wave decomposition (1a) is considered here.

Expression (2) defines the local potential φ̃R as the sum of two components ˜ψ R and χ̃R. These
components are defined by (15) in terms of distributions of elementary free-space Rankine sources, and
of the related simple algebraic functions (17)–(19), over the mean wetted ship hull ΣB (or a geometrical
surface that surrounds the ship hull), the portion Σ0 of the mean free surface located outside the body
surface ΣB , the intersection curve Γ between the surfaces ΣB and Σ0 , and the horizontal sea floor ΣD .

The component ˜ψ R defined by (15a) involves a distribution of elementary Rankine sources over the
body surface ΣB , with strength equal to the normal component n ·∇φ of the velocity ∇φ , and the free
surface Σ0 . The integral over the free surface Σ0 in (15a) is null if the potential φ is assumed to satisfy
the usual linearized free-surface boundary condition. However, this free-surface integral is not null for
a surface-effect ship; or for linearization about a base flow (e.g. double-body flow) that differs from the
uniform stream opposing the ship speed, as is allowed in the potential representation given in [1] and
used here. In any case, the free-surface pressure φz + F 2 φxx − f2φ + iτ̂ φx in (15a) is null outside a
compact nearfield region of the free surface Σ0 bordering the boundary curve Γ .

The component χ̃R defined by (15b), (16) and (17)–(19) involves the potential φ and the tangential
velocity components n×∇φ (at the body surface ΣB), φx and φy (at the sea floor ΣD and the free
surface Σ0), and t ·∇φ (at the boundary curve Γ). The line integral around Γ in (15b) also involves the
velocity component φx , which can be expressed in terms of the tangential velocity component t ·∇φ
and the velocity component nΓ ·∇φ along a unit vector nΓ = (−ty , tx,0) normal to the curve Γ in the
free-surface plane [3]. The amplitude functions AR

D and AR
0 in the integrals over the sea floor ΣD and

the free surface Σ0 in (15b) vanish rapidly in the horizontal farfield h =
√

x2+ y2 → ∞ . Specifically,
(16b), (16c) and (17)–(19) show that AR

D and AR
0 are O(φ/h3) as h → ∞ . Thus, the integrals over the

sea floor ΣD and the free surface Σ0 in (15b) in fact only involve numerical integration over compact
nearfield regions of the unbounded horizontal planes ΣD and Σ0 . In the nearfield limit r → 0 , the
integrand of the line integral around the curve Γ in (15b) is finite, and the integrands AR

B , AR
D , AR

0 of
the three surface integrals in (15b) are no more singular than the elementary Rankine sources in (15a),
i.e. are weakly singular. The potential χ̃ R defined by the representation (15b) accordingly is continuous
at the boundary surface ΣD ∪ Σ0 ∪ ΣB (whereas the potential defined by the classical potential-flow
representation, which involves a dipole distribution, is discontinuous at the boundary surface).

Thus, the representation (15) of the local potentials ˜ψ R and χ̃ R only requires integration over
compact nearfield surfaces. Furthermore, the integrands of the integrals in (15) are weakly singular in the
nearfield, and only involve ordinary algebraic functions (related to four elementary free-space Rankine

sources). This representation of the local potential φ̃R in the local/wave decomposition (1a) therefore is
particularly simple and provides a practical basis for numerical evaluation. The representation is valid
also in the special cases F = 0 or f = 0 . The wave potential φ̃W in (1a) is defined in [1] by single (one-
fold) Fourier integrals that involve spectrum functions given by boundary distributions of elementary
waves. This Fourier-Kochin representation of the wave potential, based on the generalized potential
representation given in [1] and the simple Green function given in [2], also yields a practical basis for
numerical evaluation. The complementary representation of the wave potential is given elsewhere.
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