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SUMMARY

This paper describes a study of simulation of green water loading on the deck of a ship. The numerical model has
been developed as a one-phase model initially, but has been extended to take two-phase flow effects into account.
The method used for the simulations is based on the Navier-Stokes equations and the model is discretised using a
finite volume method. Pressure, density and velocity are calculated in the entire flow domain. As a first step, the
two-phase flow model considers air as an incompressible second phase. The incompressible two-phase flow model
has been validated on a dambreak problem.

1 Introduction

Green water loading on offshore structures is re-
lated to violent weather conditions, inducing high and
steep waves. Since a large amount of water is flowing
on the deck during green water conditions, often caus-
ing damage to deck houses or other equipment, there
is a great need of simulation tools that can predict the
impact loads of green water and give more insight in
the local impact phenomena [3]. Green water loading
is associated with complex mixtures of air and water,
appearing as air pockets, spray and bubble clouds. The
physics of the liquid phase are generally considered
most important for offshore hydrodynamic problems.
Therefore, many mathematical and numerical models
only take one phase into account. This approach
satisfies until flow effects like wave breaking are
getting significant. Considering the second phase (air
or another fluid) is useful as soon as the water can no
longer be considered as one homogeneous medium.
For those conditions, the second phase may affect the
water height and pressure level significantly.

2 Physical-mathematical model

In an offshore environment, a one-phase model
only considers the flow variables like pressure and
velocity in the water phase. The pressure and velocity
boundary conditions at the free surface are based on
continuity of normal and tangential stresses [3]:
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Here, un and ut are the normal and tangential compo-
nent of the velocity respectively, p is the pressure, p0 is
the atmospheric pressure, σ is the surface tension and
κ denotes the total curvature of the free surface.

A two-phase model implies a registration of pres-
sure, velocity and density as well in the second (air)
phase, see figure 1. Since these variables are calculated
in both phases, the boundary conditions at the free sur-
face ((1) and (2)) are no longer needed in a two-phase
model.

Figure 1: Calculation domain for one-phase (left) and
two-phase (right) model

The continuity and momentum equation for the two-
phase model are

∇ · u = 0 (3)

ρ
∂(u)

∂t
+ ρ∇ · (uu) + ∇p =

∇ · (µ∇u) + ρF (4)

with density ρ, time t, velocity u, dynamic viscosity
µ and F an external body force (such as gravity). For
incompressible flow, the density ρ has a constant value
in each phase. At locations with a mix of both phases
the density is calculated by weighted averaging, while
the viscosity is then calculated by harmonic averaging.
For some applications it is necessary to consider the
compressibility of at least one of the phases. For com-
pressible flow, the pressure p depends on the local den-
sity distribution inside both phases. The continuity and
momentum equation are now given by

∂ρ

∂t
+ ∇ · (ρu) = 0 (5)
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The pressure-density relation in the compressible
model can be derived by subtracting the time-
differentiated continuity equation (5) from the diver-
gence of the momentum equation (6). Neglecting the
right-hand side of the momentum equation (6), this
gives
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Using the speed of sound a, given by a2 = dp/dρ, the
third term in equation (7) can be rewritten as
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For a mixture of air and water, the speed of sound
is high in pure salt water (1510 ms−1) or pure air
(340 ms−1), but much lower (down to 25 ms−1) for a
mixture of water and air.
Assuming incompressible conditions is related to the
assumption of an infinite speed of sound a. Incom-
pressibility of both phases in the numerical model will
be assumed for the validation in Section 4.

3 Numerical model

The Volume Of Fluid (VOF) algorithm as devel-
oped by Hirt and Nichols [2] is used as a basis for
the fluid advection. Compared to level-set methods, a
major advantage of VOF methods is their conservation
of mass [4]. For the two-phase model, the VOF
function determines the filling ratio of the first fluid in
each computational cell.
In a one-phase approach, the method solves the incom-
pressible Navier-Stokes equations with a free-surface
condition on the free boundary, see eq. (1) and (2).
This is in contrast with the two-phase approach, when
the VOF function is used to determine the aggregated
density value inside a grid cell. The air-water interface
is still reconstructed using the VOF function.
The current numerical model, ComFLOW, is an
improved 3D Volume Of Fluid (iVOF) Navier-Stokes
solver. Initially developed to study the sloshing of liq-
uid propellant in satellites [1], the program is currently
able to simulate green water loading, sloshing in LNG
and anti-roll tanks, water entry and wave impact loads
on fixed structures.

The discretisation of the incompressible Navier-
Stokes equations is done on a staggered grid, using an
explicit first order Forward Euler Method:

∇ · un+1 = 0 (9)
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In these equations, dt is the timestep and n + 1 and n
denote the new and old time level, respectively.
To describe the numerical implications of taking a
second phase into account, it is useful to describe
the cell labeling briefly. Figure 2 shows the different
classes of cells in the two-phase flow model. Geometry

Figure 2: Schematic overview of cell labeling

apertures have been introduced to distinguish between
solid cells (F b = 0) and cells completely open for
flow (F b = 1). Solid cells are classified as eXternal or
Boundary cells, while open cells are classified as Flow
cells, see figure 2. All cells next to eXternal cells are
labeled as Boundary cells, while the remaining cells
are Flow cells. For the construction of the interface
between the two phases, a VOF function is used which
has values 0 ≤ F s ≤ F b, where F s is volumetric the
part of the cell filled with the first phase. In figure 2,
for Empty cells F s = 0. Cells neighbouring the Empty
cells are labeled as Surface cells, while the remaining
cells are Fluid cells. Due to this labeling method, the
Fluid cells are partially or completely filled with the
first (liquid) phase.
The labeling in figure 2 is equal to the labeling in
the one-phase model. However, the velocity and
pressure are now calculated as well in the Empty cells,
which are completely filled with air. Furthermore, the
viscosity and density are now variable in space, so they
are registrated in all Flow cells.

4 Model results

The two-phase numerical model has been tested
on several offshore problems, just as the one-phase
model. One of the test cases is the dambreak simu-
lation, which can be regarded as a simple model of
green water flow on the deck of a ship. The numerical
simulation is compared with model experiments
performed at Maritime Research Institute Netherlands
(MARIN). During the experiment measurements have
been performed of water heights, pressures and forces
on different locations. The small box in figure 3,
which represents a container, is covered by eight
pressure sensors, while the water height is measured at
several locations behind and in front of the small box.
Figure 3 shows snapshots of the model experiment



and the numerical simulation in an early stage of the
experiment, just before the water front reaches the left
wall.

Figure 3: Snapshots of dambreak experiment and simu-
lation with a box in the flow, t = 0.56s

Regarding figure 3, there is a visual agreement be-
tween the snapshots of simulation and experiment.

Figure 4: Water height development just behind the
small box

Figure 4 shows the water height development just
behind the small box. The one-phase model predicts a
water level at t = 1s which is clearly too high, while
the rise time is too short. The results of the experiment
and the two-phase model show a large resemblance,
although the water in the two-phase simulation reaches
the measurement location slightly later. This may
be caused by the treatment of the air viscosity in the
model. Due to the upwind discretisation, artificial
diffusion in the model changes the viscosity of the
air to a value larger than the physical one. Therefore,
the water needs a larger effort to push the air away,
resulting in a slower advancement of the water front in
the numerical model.

For the pressure level development (figure 5), the
overall trend of measurement and numerical simu-
lations is quite similiar. The initial pressure peak

Figure 5: Pressure development at the front of the small
box

of the experiment is not correctly predicted by the
one-phase simulation. The correlation between the
two-phase simulation and the experimental results is
better. Furthermore, the one-phase simulation shows
some artificial pressure spikes that are not present in
the two-phase simulation. The largest of these artificial
pressure spikes, at t = 1.32s (see figure 5), will be
considered in more detail.
Figure 6 shows the pressure values around the small
box (see figure 3), one timestep before and at the
moment of the pressure spike.
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Figure 6: One-phase model - pressure field around the
small box in figure 3. The peak pressure values are gen-
erated one timestep after the changes in cell labeling
shown in figure 7.

The pressure spikes in the one-phase model originate



from the cell labeling method as described in figure 2.
Due to the violent fluid motion, many topological
changes may occur simultaneously within a single
timestep in the numerical simulation. Figure 7 shows
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Figure 7: One-phase model - a) velocity field and b,c)
cell labeling around the small box in figure 3. The pres-
sure development shown in figure 6 is induced by rapid
changes in cell labeling. Between timesteps 2212 and
2213, the Empty Cell in the air pocket (x = 0.75, y =
0.2) changes to a Surface cell, causing an artificial
pressure spike around this air pocket.

the velocity field and cell labeling just before the
highest pressure spike in the one-phase simulation (at
t = 1.32s). For the Empty and Surface cells in the
one-phase model, mass conservation is not required by
the numerical algorithm. Due to the rapid transition
from Empty cells and Surface cells to Fluid cells, the
pressure has to ’work’ to achieve mass conservation in
the newly created Fluid cells. This ’work’ will manifest
itself in a spike in the pressure signal of the one-phase
model.
For the two-phase model, mass conservation is also
applied to the Empty and Surface Cells. Mass con-
servation in all Flow cells (see figure 2) prevents
the model from giving pressure spikes as a result of
changing cell labels. The result is a smoother pressure
signal of the two-phase model, as shown in figure 5.

Compared with other test cases in offshore envi-
ronments, large air pockets, for example occuring
during wave slamming, are quite insignificant for the
dambreak problem. As soon as air pockets are present
more frequently, including compressibility of the air
phase may be valuable.
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