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Introduction 

As has been known, one of efficient methods to simulate the nonlinear water waves is the finite 
element method based on a fully nonlinear potential theory.  A drawback of the FEM, however, is that 
a complex unstructured mesh is generally required and may need to be remeshed at every time step to 
follow the motion of waves and/or structures.  Repeatedly regenerating such a mesh can make the 
required CPU time prohibitive in a simulation of several thousands steps on a normal workstation.  In 
order to reduce the time spent on the remeshing, simple structured mesh has been used in [1] and [2].  
For the same purpose, Wu et al [3] have recently employed a hybrid mesh.  In their approach, a 2D 
mesh in a horizontal plane (say, the free surface at t=0) is first generated and then vertical lines are 
drawn to construct a 3D mesh.  The 2D mesh is formed by combining an unstructured mesh in a 
region near structures with a simple structured mesh in other regions.  This is a good approach but 
restricted only for cylindrical structures without roll and pitch motions. 

Recently the authors of this paper have developed a new method called QALE-FEM [4].  The main 
difference of this method from the conventional finite element method, such as in [1] – [3] is that the 
complex mesh is generated only once at the beginning and is moved at all other time steps in order to 
conform to the motion of the free surface and structures.  This feature allows one to use an 
unstructured mesh with any degree of complexity without the need of regenerating it every time step.  
Due to this feature, the QALE-FEM has high potential in enhancing the computational efficiency 
when is applied to problems associated with the complex interaction between large steep waves and 
structures since the use of an unstructured mesh in such a case is likely necessary.    To achieve overall 
high efficiency, the  numerical techniques involved in the QALE-FEM have been developed, 
including the method to move inner nodes, the technique to re-distribute the nodes on the free surface, 
the calculation of velocities and so on.   The method has been validated by comparing its numerical 
results with those in publications. 

Since the experimental demonstration by Heathershaw [5], the problem about the periodic bars has 
been studied by many researchers using various mathematical models with particular attention paid to 
the Bragg resonance that leads to large reflecting waves.  These models were developed by making 
various approximations, including linear perturbation approach [6], multiple scale analysis [7], mild-
slope approach [8], fully linear analysis [9] and so on.   The results obtained from these models agreed 
satisfactorily with experiments carried out by Heathershaw [10] and Davies & Heathershaw [11] in 
cases with small surface waves and bar wave steepness.  Only the paper by Liu and Yue [12] 
performed fully nonlinear analysis using a spectral method.   In this paper, the recently-developed 
QALE-FEM method will be used to investigate the problems associated with the interaction between 
the water waves and periodic bars on the bottom, with particular attention paid to the nonlinear effects 
on the reflection at the Bragg resonance.  
 
Description of the QALE-FEM 

Details about the QALE-FEM have been given in [4] and a brief description about it will be 
presented herein.   As indicated above, the finite element formulation is similar to those in [1] and [3].  
The main difference is that the complex mesh is generated only once at the beginning and is moved at 
other time steps in order to conform to the motions of the free and structure surfaces.  In this approach, 
the mesh can be generated by any generator and can have any complexity, any structure and any 
favourable distribution.  Because the mesh generator is used only once in a simulation of several 
thousands time steps, the CPU time spent on the mesh generation is not an important matter since it 
may be only a small proportion of total computational time even it is as long as, say, several ten 
minutes.  In addition, the generator is not necessarily included in the main code.  However, it is 
obvious that the technique for moving mesh is vital in order to achieve a good quality mesh at all time 
steps and to avoid a large CPU requirement.   To achieve this, the following strategies are adopted   

• ensuring that there is no nearly flat elements in the initial mesh; 



• considering the interior nodes and boundary nodes separately; 
• considering the nodes on the free surface and on rigid boundaries separately;  
• using relatively stiffer springs near the moving boundaries, such as the free surface. 

The high quality of initial mesh is achieved by using the mesh generators based on the available 
technologies, such as the mixed Delaunay triangulation and advancing front technique.  The interior 
nodes are moved by using the linear spring analogy method that has been well developed in 
computational aerodynamics.  In the linear spring method, nodes are considered to be connected by 
springs.  The whole mesh is then deformed like a spring system.  At each time step, the equation for 
the spring system is solved to find the new positions of all inner nodes and nodes on rigid boundaries.  
The difference of the spring system in the QALE-FEM from that in computational aerodynamics is 
that the spring stiffness used here is determined by  
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where kij is the spring stiffness, lij is the distance between Nodes I and J; zi and zj are the vertical 
coordinates of Nodes I and J; d is the water depth; and γ is an coefficient that should be assigned a 
larger value if the springs are required to be stiffer at the free surface.  In computational aerodynamics, 
the stiffness is taken as the inverse of the distance between two nodes. 

The nodal positions on the surface are determined by physical boundary conditions, i.e., following 
the fluid particles in the most of time steps.  However, to prevent these nodes becoming too close to or 
too far from each other, these nodes need to be relocated every several time steps.   In order to do so, 
the nodes on the free surface are grouped into those on curved waterlines and those that do not lie on 
the waterlines.  The nodes in two groups are treated separately.  Those on the waterlines is re-
distributed based on a principle for self-adaptive mesh while those on the free surface but not on the 
waterlines is moved also using the spring method but with spring stiffness taking into account of the 
free surface gradient. 

It is crucial in the simulation of water waves to evaluate the fluid velocities on the free surface 
because they are used to update the information on the surface every time step.  The velocity at a node 
may be estimated by using a finite difference technique from the velocity potentials at this node and 
nodes connected to it.  The approach is quite efficient.  However, since the neighbours of a node on 
the free surface distribute either on or below the surface, the normal (or nearly vertical) component of 
the velocity estimated by the approach generally possesses relatively low accuracy, which is 
understandable from the fact that backward or forward finite difference schemes approximating a 
derivative have a lower order of accuracy than a central scheme.  In order to enhance the overall 
accuracy, Ma, Wu & Eatock Taylor [1] suggested that the horizontal components of the velocities at 
nodes on the free surface are evaluated separately from their vertical components.  For estimating the 
vertical component, they developed a three-point formula that needs the velocity potentials at the node 
considered and at other two nodes on the same vertical line as the previous node, which is next but 
below the free surface.  After the vertical component is found, the horizontal components are 
computed by averaging those given by the difference of the velocity potentials at all neighbour nodes 
on the free surface.  This approach is very efficient and accurate.  However, it is limited to structural 
meshes with vertical grid lines.  In the QALE-FEM, the above approach is extended to unstructured 
meshes generally without vertical grid lines.  The basic idea of the new approach is similar to the 
above approach.  The main differences are that (1) the vertical line is replaced by a normal line 
perpendicular to the free surface at the node considered; (2) the two nodes on the vertical line are 
replaced by two points that are not necessarily coincided with nodes; and (3) the normal (instead of 
vertical) component of the velocity is found before computing the components in tangential directions. 
 
Numerical Results 

In this section, the numerical results obtained by using the QALE-FEM will be presented and will 
be compared with the experimental data and analytical solutions from some of publications with 
particular attention paid to the reflecting wave properties near the Bragg resonance and to the 
nonlinear effects. The two cases to be considered are the same as those in [6], i.e., bar patches with 4 
and 10 sinusoidal bars on the bottom of the wave tank, respectively.  The wave will be generated by 
the wavemaker with the motion specified by ( ) ( )ωττ cosaS −= , where ( )τS  is the displacement of the 
wavemaker, ( )τU is its velocity, and ω are respectively its amplitude and frequency. a



First considered are the cases with the small wave amplitudes.  For these cases, the water waves are 
generated by using small amplitudes of the wavemaker and the resulting (incident) wave steepness is 
less than 0.01.  In order to compare our results with experimental data in [6], the dimensionless bar 
wave number (kbd) is assigned to a value of π/10, the ratios of the bar amplitude (ab) to the water depth 
are taken respectively as ab/d = 0.32 for 4 bars and ab/d = 0.16 for 10 bars.  The wave histories 
recorded at two points about 5 bar-lengths before the front side of the bar patch are used to compute 
the reflection coefficients.  The reflection coefficients near the resonant condition (2k/kb = 1, where k is 
the water wave number) are depicted in Figure 1 together with experimental data from [6].  For the 
case with 10 bars, the nonlinear results from [10] and analytical results from simplified models [7] are 
also included.  For the case with 4 bars, the results from [11] are plotted apart from the experimental 
and our numerical results.  Figure 1a for 10 bars indicated that our numerical results are almost 
coincided with those from [10] and closer to the experimental data than the analytical solution based 
on the simplified model [7] on the side of 2k/kb >1.  On the side of 2k/kb <1, our results have some 
difference from [10] but closer to experimental data and the analytical results from the simplified 
model [7].  From Figure 10b, it can be seen that the numerical results obtained by using the QALE-
FEM method agree well with the analytical results given in [11] and satisfactorily with experimental 
data. 
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(a) 10 bars, kbd =π/10, ab/d =0.16             (b) 4 bars kbd =π/10, ab/d =0.32 

Figure 1 Reflection coefficient as a function of 2k/kb . 
 

In order to investigate the nonlinear effects, the case with 4 bars is simulated with different 
amplitudes and results are presented in Figure 2.  In Figure 2a, the coefficients at different positions 
are plotted together with experimental results from [6] and their analytical solution.  It can be seen that 
the reflection coefficients before the bar patch tends to decrease with the increase of the amplitudes.  
To further show this trend, the reflection coefficients at a point x/ λb= -4 are plotted in Figure 2b.  
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Figure 2 Reflection coefficients with 4 bars in a range of  
-2<x/ λb <2 (kbd =π/10, ab/d = 0.32) 

 
Apart from the effects on the reflection coefficients, the shapes of wave profiles are also different 

for different amplitudes.  This is illustrated in Figure 3, where the profiles for different amplitudes are 
depicted.  As can be seen, the wave profiles on the left of the bar patch for the smaller amplitude 
seems to be superimposed (so the wave become higher) by two harmonic waves traveling in opposite 



directions but the shape is still similar to the shape of harmonic waves.  For the larger amplitude, the 
wave amplitude on the left of the bar batch seems not to be changed dramatically by the reflection 
waves, instead, the shape of the waves is significantly modified. 
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Figure 4 Wave profiles corresponding to different amplitudes for 4 bars 
 
Summary 

In this paper, the QALE-FEM recently developed by the authors are described and applied to 
simulate the interaction between water waves and periodic bars on the bed.  Good agreement of 
numerical results from the QALE-FEM with those in publications is shown.   The nonlinear effects on 
the reflection properties are investigated and it seems that the effects tend to reduce the reflection 
coefficients and make the wave profiles more complex.  More results will be presented in the 
workshop. 
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