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Introduction

The characteristics of those separate types of en-
ergetic waves which appear on the ocean {Tidal,
Tsunami; Long Wind Generated} are as distinct as
their characteristic periods {12 hrs, 30 minutes, 10
seconds}. So dispersive effects for them are: {absent,
very weak, crucial}.

During the trans-ocean propagation of Tsunami
waves, weak dispersion results in the appearance of
a train of very long waves, as in the decay of a long
pulse in very shallow water, Kajiura (1963), see Mei
(1983). These travel close to the shallow water limit-
ing speed

c =
√

g(h + η) =
√

gη∗ (1)

or 224 m/s for a water depth, h = 5 km, with a
wave length, L0 = 540 km, corresponding to a wave
period of 40 minutes, as observed in Sri Lanka after
the Aceh earthquake, whose maximum trans-ocean
wave amplitude, η̂o, is estimated at O(1m).

Here we imagine that such a train, ηo(~x, t), ap-
proaches the foot of the coastal rise, 100 km from
the shoreline in Sri Lanka, while propagating co-
directional with the bottom gradient, ∇h(~x). More
than that, we imagine that variations of both the wave
and the coastal shape are primarily in the onshore di-
rection of wave propagation, more rapidly at first on
the coastal slope and more slowly on the coastal shelf
leading to the shoreline.

This very long one-dimensional Tsunami wave
becomes transformed on the rise, and amplifies as
it progresses shoreward and, as we know, can result
in a flood of high water at the shoreline and in a
large flux of water across the beach. We would like
to understand how this comes about and be able to
quantify through suitable formulae the flow speed,
us, and wave amplitude, η̂s, at the shoreline. Since
the Tsunami wavelength, L, may be much larger
than the length of the rise, `, it is at the same time
necessary to understand to what extent the incoming
wave is reflected from the rise.

Governing Equations

The governing equations (given here in their full
3-dimensional version for completeness) are based on

the Airy (1845) long wave, non-linear approximations:

(momentum) ~ut + ~u · ∇~u + g∇η = 0 (2)

(continuity) ηt +∇ · [(η + h)~u] = 0 (3)

where h is the undisturbed water depth, η the eleva-
tion of the local water surface above sea level, ~u is the
horizontal velocity, assumed uniform in depth, while
the vertical velocity v is neglected; the variation of
pressure in depth is hydrostatic.

In the case of small wave amplitude, (η/h)2 << 1,
then the underlined terms in (2) and (3) may be
neglected. The resulting linearized theory has been
much studied, see Mei (1983). Here, in our Sri Lanka
example, we estimate that the linearized theory is ap-
plicable for h > h′, where:

h′ = 35η̂
T

(4)

where η̂
T

is the Tsunami wave amplitude entering the
coastal rise, O(1m). In this case, (2) and (3) may be
combined into the well known wave equation due to
Green (1837), see Lamb (1932):

ηtt −∇ · (c2
`∇η) = 0 (5)

c
`

=
√

gh (6)

Green’s Theory and Geometrical Optics

Following the assumption that the variation of c
over one wavelength, L, of the propagating wave is
small

L

c
∇c << 1 (7)

Green (1837) has shown that,

η̂1/η̂2 = (h2/h1)
1/4 (8)

which was later shown, Lamb (1932), to correspond
to conservation of the Flux of wave energy, FE , in
shallow water,

FE = (η2/2) · c` = constant (9)

with the implication that the reflection of wave energy
from the bottom may be neglected when (7) applies.
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Wave propagation in media with variation of wave
speed occurs elsewhere in physics,first of all in Op-
tics, and led to the Eikonal equation and the general
theory of Geometric Optics, beginning at the end of
the 19th century, see Born and Wolf, (1975). That
theory is also based on the approximation (7). Ap-
plication to the present problem is described by Mei
(1983), with results corresponding to (8) and (9). In
particular that theory is unable to provide realistic
estimates of reflection coefficients, the reflection al-
ways being small. Furthermore, it results in unreal-
istic estimates of the wave height as the shoreline is
approached (h → 0). Finally, these theories are on
their face unsuitable for our problem, since we have
in opposition to (7) the condition

L

c
∇c ≈ L

`
> 1 (10)

where at Sri Lanka the Tsunami wave length
is 540 km, and the length of the coastal rise is
100 km. Evidently we need a theory capable of
dealing with (10) while providing appropriate esti-
mates of wave transformation in the face of reflection.

Method of Characteristics

The exact Airy equations, (2)-(3), form a hyper-
bolic system and can be solved utilizing the method
of characteristics, see Yih (1983). The appropriate
non-linear equations corresponding to (2) and (3) are:

[∂/∂t + (u + c)∂/∂x](u + 2c) = ghx (11)

[∂/∂t + (u− c)∂/∂x](u− 2c) = ghx (12)

The two quantities [(u+2c); (u−2c)] can be integrated
along the characteristic curves in (x, t) space, defined
by (xt = u ± c). When u and c are known at x = 0
for all t, then the solution for all (x, t) behind the
leading characteristic, xt = c + u may be calculated,
at least up to the point where separate characteristic
lines may merge. These correspond physically to the
appearance of wave breaking leading to bore forma-
tion, Stoker (1957).

Analyses based on the above method have been car-
ried out by Kishi (1963), see Horikawa (1978). The
latter quotes the following result of Kishi’s analysis

h/ho =

{√
1 + η̂

T
/ho − 1√

1 + η̂/h− 1

}4/5 {
6
√

1 + η̂
T
/ho − 1

6
√

1 + η̂/ho − 1

}6/5

(13)
Taking the limit when h << η̂, approaching the

shoreline, we find, remarkably, that (13) takes the
asymptotic form:

(h/η̂ → 0) η̂s/η̂
T

= (.40)(ho/η̂
T
)1/5 (14)

a simple formula for the wave elevation, η̂s, at the
shoreline, and in form, in agreement with the results
derived below through an alternative analysis.

Alternative Analysis Based on Co-ordinate
Straining

We take advantage of the linearity of the system
over most of the rise, and then treat the peak of
the wave motion in the non-linear region separately
through a simple extension of the linear results into
the weakly non-linear regime.

We begin with the following non-linear equations
which are fully equivalent to the Airy equations, (1)-
(3), and are obtained from the latter by simple ma-
nipulations,

~qtt − (gη∗)∇2~q = −R (15);

R = {~u∇ · ~qt + (2~ut + ~u∇~u)∇ · ~q + (∇~u) · ~qt + ~q · ∇~ut}
(16);

η∗t +∇ · ~q = 0 (17);

~q = ~uη∗ (18);

η∗ = h + η (19)

If the LHS of (15) is taken as 0(1), then

R = 0(u/c) = 0(η/h) (20)

and therefore on the rise, the following one-
dimensional wave equation pertains with the variable
wave speed,

√
gη∗ ≈

√
gh = c`:

qtt − c2
`qxx = 0 (21)

for all depths less than h′, see (4). For the solution
of (21) appropriate to our situation here we adopt a
new co-ordinate ξ, defined by the straining relation

c`ξx = co (a constant,
√

gho) (22)

so that (21) is transformed into a damped wave equa-
tion with constant wave speed, co, in the strained
co-ordinate,

qtt − c2
oqξξ + co(c`)x · qξ = 0 (23)

and,
ηt = −(co/c`)qξ (24)

This formulation offers two obvious advantages over
its parent, (21). First, the variation in wave speed in
physical coordinates has been absorbed in the change
of variable, and provides the wave part of the so-
lution without ambiguity — although the effect of
the damping term, underlined in (23), remains to be
determined; furthermore, the constancy of the wave
speed informs us that no shocks or bores may ap-
pear. Second, the very appearance of the damping
term informs us immediately that propagating waves
are possible only for sufficiently small gradients in c`,
while for larger gradients complete reflection of the
incoming wave will occur. As we shall see, this allows
us to deal realistically with (7).



If we replace co(c`)x in (23) by its spatial average
on the rise, then

qtt − c2
oqξξ − c2

o/` · qξ = 0 (25)

which yields a useful approximation provided that
co(c`)x does not vary too much. Fortuitously this
damping factor is constant for a particular bottom
slope which is at the same time an excellent model of
a generic rise! It is,

c2
`/g = h = ho[1− x/`]2 (26)

which has a slope at the beginning of the rise (x = 0),
hx = 2ho, which declines by half at x/` = 1/2 and
vanishes slowly on the shelf leading to the surf line at
x = 0.

For this model, (26), then in view of (22), the
damping factor becomes,

c2
o(c`)ξ/c` = −c2

o/` (27)

so that, corresponding to (26),

c` = coe
−ξ/` (28)

The General Solution and Amplification on
the Generic Rise

The general solution of (25) in Fourier form consists
of the sum of two independent waves on the rise, one
traveling toward the shore (−), and the other seaward
(+):

qr(ξ, t) = Σj

+∞∫
−∞

Aj(σ)e−ξ/2`ei[σt±κξ]dσ (29)

to be summed over j, where j = −, corresponds to
the upper signs,and j = +, to the lower, and where
κ =

√
β2 − 1/2`, and

β = 2σ`/co = 4π(`/L) (30)

Correspondingly, making use of (24), the wave ele-
vation, ηr, may be calculated from qr:

ηr(ξ, t) = Σj

+∞∫
−∞

(Aj/co)γj(β)eξ/2`ei[σt∓
√

β2−1(ξ/2`)]dσ

(31)
where

γj(β) =

[
±

√
β2 − 1− i

β

]
(32)

The two amplitude spectra (A−, A+) are found by
matching ηr and qr with the incoming Tsunami wave
at (x, ξ = 0). where,

η
T
(x, t) =

+∞∫
−∞

A
T
(σ)ei[σt−κ

T
x]dσ (33),

and
q

T
= houT = coηT

(34)

with the results,

coAT
= ΣjAj = A− + A+ (35)

coAT
= ΣjAj

[
±

√
β2 − 1− i

β

]
(36)

and finally,

Aj = ±c0AT

[
β ±

√
β2 − 1 + i

2
√

β2 − 1

]
(37)

For a suitably long coastal rise (β >> 1), A+ → 0,
so,

ηr = η−(ξ, t) =
∫ +∞

−∞
AT (σ)eξ/2`ei[σt−κ

T
ξ]dσ (38)

showing that the Tsunami shape is preserved on the
rise in strained coordinates (ξ), while amplifying like
eξ/2`.

Since eξ/2` =
√

co/c`, it follows from (38) that,

(η̂r)2 · c` = A2
T · co constant (39)

so that the flux of wave energy, see (9), is again
conserved. Therefore, the latter conservation law is
a much more general result than the limitations of
geometrical optics suggests.

Wave Reflection on the Generic Rise

As the coastal rise shortens it eventually becomes
effective in reflecting the incoming long wave, and fi-
nally for β ≤ 1 or ` ≤ L/4π only standing waves
exist:

coηr(ξ, t) = Σj

+∞∫
−∞

Ajγj(β)eξ/2`(1±
√

1−β2)eσtdσ

(40)
At β = 1, the two waves are large but almost cancel

each other with the result,

ηr(ξ, t) =

+∞∫
−∞

A
T
eξ/2`eiσtdσ (41)

so that η̂r in this case is identical to the case of the
long rise, (38).

For shorter rises, A+ exceeds A−, and as β → 0,
A− can be neglected and,

ηr →
+∞∫
−∞

A
T
eiσtdσ → η

T
(0, t) (42)

constant on the rise, without amplification! Also
qr → q

T
(0, t). So the amplification of the wave due to



the rise decreases as β decreases from the value unity,
and disappears entirely for very short rises.

We note that this theory does not take into
account any reflection which might take place at the
shoreline itself, from the presence there of a seawall,
for instance. In that case we might expect further
effects which travel seaward and modify the incoming
Tsunami, as in the normal reflection of an acoustic
wave from a wall.

The Onshore Amplification Law

Closest to the shore, strong non-linear effects and
bottom irregularities can occur, resulting in the cre-
ation of bores. In this regime, say for h < η,the on-
coming flow, characterized by high velocities, more
resembles an open channel flow than an ocean wave.
Seaward of the bore which may form, lies the am-
plified wave, pushing water ahead of it into the open-
channel regime approaching the shore. It is the height
of this amplified wave which we seek to estimate, as it
eventually appears at the shoreline behind the bores
and pours onto the land beyond the shore.

In the likely absence of any further amplification
of this wave in the region closest to shore, h < η,
we seek predictions based upon an extension of the
linear regime into the weakly non-linear regime, i.e.
the region where,

η̂ < h < 35η̂
T

(43)

In this regime we apply the wave equation, (21), ex-
cept that we replace the linear wave speed, c` =

√
gh,

by its non-linear counterpart, c =
√

gη∗, as in the
exact parent equation (15). We neglect, leaving jus-
tification for future analysis, the non-linear residual,
R.

After suitably modifying (28) we find,

cs =
√

gη̂s = coe
−ξs/` 44

so that the effective shoreline is found at a finite value
of ξ, ξs, rather than at infinity, as in the linearized
treatment. For the amplitude at the shore, we uti-
lize (31)-(37) as before. Then, for suitably long rises,
β >> 1, as in Sri Lanka, we utilize (38) so that,

η̂s = η̂re
ξs/2` (45)

Combining (44) and (45), eliminating ξs, a new
Amplification Law can be found,

η̂s/η̂
T

= (ho/η̂
T
)1/5 (46)

For example: ho = 5 km; η̂
T

= 1m; η̂s/η̂
T

= 5.6; η̂s =
5.6 m. This height of the onshore wave is consistent
with anecdotal observations in Sri Lanka. This result,
(46), corresponds to (9), conservation of wave energy
flux, where c` is replaced by c.

For the speed onshore, using previous results,

us = qs/ηs =
(
ce−ξs/2`η̂

T

)
/eξs/2`η̂

T
(47)

or,
us = cs (48)

so that Froude number on shore, Fs, is unity:

Fs = us/cs = 1 (49)

This result happens to correspond, perhaps acci-
dentally, to the local hydraulic law which pertains for
open channel flow spilling over a barrier, as at the
top of a dam spillway, see Chow (1961). Recall that
all these results and conclusions apply for sufficiently
long rises, β << 1. Other results and conclusions may
be found from the preceding analysis where strong re-
flections from the rise dominate.

Finally, we note that the Amplification Law (46)
corresponds in form to (14), the result we have found
from Kishi’s formula (18) in the limit, h << η̂, i.e.
approaching the shoreline. This correspondence, as
it was obtained by a completely different approach,
lends support to the present analysis. The appear-
ance of the factor (.40) in (14), missing in (46), may
result from reflections from the rise in the case con-
sidered by Kishi.

We have largely fulfilled our original purpose, to
understand and predict the amplification of Tsunamis
on the coastal rise. Strongly non-linear effects close
to the shoreline, including the appearance of bores,
remain to be elucidated.
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