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INTRODUCTION

High quality numerical schemes now play a key role
in design and re-assessment in coastal and offshore 
engineering.   One of the aims of our work has been 
to develop simple, but accurate and easy adaptable
methods for a wide range of applications in 
arbitrarily complicated geometry. This paper 
presents a Cartesian cut cell method and
demonstrates its ability to accurately model curved 
coastal structures for various problems using both 
the non-linear shallow water equations (NSWE) and 
a Boussinesq equation set. In combination with 
Godunov-type shock capturing schemes, the 
numerical solvers are able to provide high-resolved 
solutions for a wide variety of problems, including
steep-fronted shallow flows and strongly non-linear 
waves, including breaking wave interactions with 
curved coastal structures.

The Cartesian cut-cell technique (Yang et al. 1997) 
is implemented for body fitting using line segments.
We updated the method by using ghost-cells to 
overcome the small time step restriction caused by 
very small cut cells. Our recent paper (Liang et al.
(2006)) discusses a solution method of the non-linear 
shallow water equations on adaptive cut cell 
quadtree grids for the first time. For the problem of 
steady potential flow passing a circular cylinder, the 
Cartesian cut cells have a great advantage over the 
conventional staircase approximation of the curved 
boundary. The numerical results with Cartesian cut 
cells show good agreement with the analytical 
solution. In contrast, the usual type of staircase 
approximation for the boundary associated with 
Cartesian grids produced a spurious rotational wake
downstream and the numerical velocity at the 

shoulder point is reduced to zero.

In this paper, two problems are presented for waves 
impacting a vertical bottom mounted circular 
cylinder, a typical configuration for an offshore wind 
turbine foundation. The first case is a shock-like bore 
(broken wave) interaction, and the second one a 
solitary wave hitting the cylinder.

CARTESIAN CUT CELL METHOD 

For Cartesian cut-cell grids, input geometries (solid
bodies) are cut out of the background grid, to 
approximate the boundary with piece-wise linear 
segments.  The Cartesian cut-cell grids remain
unchanged for the solid structure through the entire
simulation, once they are generated at the beginning 
of the calculation. The governing equations are 
solved directly in Cartesian coordinates. A cut cell 
can have 3-5 faces.  According to the angle ( )
formed by the cut edge and the x-axis: each cut cell 
can be categorised into one of four types: (0o,
90o); (90o, 180o); (180o, 270o); and (270o,
360o).  Each type has four sub-types.  The four sub-
types for the case with (0o, 90o) are illustrated in 
Figure 1; the sub-types for other cases can be 
obtained by rotation. 

Figure 1. Grid generation: sub-types of cut cell for
case with  (0o, 90o).

After all the cut cells have been produced, a 
boundary identification technique is performed to 
identify which cells contain fluid, are solid or are on 
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the interface as cut-cells. As an example of grid
generation, a typical quadtree grid with cut cells 
obtained for a single petal of a flower-shaped 
geometry is shown in Figure 2.

Figure 2.  Cut cell quadtree grid generated
about a petal. 

APPLICATIONS IN COASTAL ENGINEERING 

1.Shock-like Bore Interaction with Circular Cylinder 

The calculation is carried out in a 5 m × 5 m domain,
with a horizontal, frictionless bed.  At the centre is 
placed a circular surface-piercing cylinder of 
diameter 1 m.  The domain has open inlet and outlet
boundaries at its west and east ends.  The north and 
south lateral boundaries are open.  A shock-like bore 
(broken wave) propagates from the western (left) 
boundary. Initially, the water is at rest, and has a still 
water depth equal to 1 m.  The flow states before the
shock are: hR = 1.0 m; uR = 0 m/s; and vR = 0 m/s.
The Froude number of the incident shock is set to 
2.81. At t = 0 the shock hits the left edge of the rigid 
surface of the circular cylinder.   The flow is 
assumed to be inviscid.  The two-dimensional non-
linear shallow water equations derived by integrating
the Reynolds equations over the flow depth are used 
for the numerical simulation.  In matrix form, the 
hyperbolic conservation law formed by the equation 
set can be written as 
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where u, f, g and s are vectors representing
conserved variables, fluxes in the x and y-directions,
and source terms, respectively.  Neglecting the 
viscous fluxes, surface and bed stresses and the 
Coriolis effects, the vectors can be written as 
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Here,  is the water elevation above the still water 
level datum; h )( sh is the total depth, where hs

is the still water depth; u and v are depth-averaged
velocity components in the two Cartesian directions; g
is the acceleration due to gravity; oxS )( xhs

and oyS )( yhs  are bed slopes in the x and y-
directions, respectively. These equations are written 
in deviatoric form, obtained using flux-balancing.
These equations also apply to shallow flow 
hydrodynamics in domains with varying bed 
topography. Here, the NSWE equations are solved
numerically using a Godunov-type finite volume 
method on Cartesian cut-cell grids. An HLLC 
approximate Riemann solver is used to evaluate the
interface fluxes. Second-order accuracy in time and 
space is achieved using the MUSCL-Hancock 
predictor-corrector method. The main advantage of 
this approach is that not only is the proposed scheme
conservative, but also no special algorithm is required 
to simulate discontinuous or close to discontinuous
flows. Figure 3 presents water depth contours and the 
adapted grid at t = 0.3s, and Figure 4 shows a 3-D 
view of the surface profile. These numerical results 
show the dominant physical phenomena with accurate
capture of the sharp shock front using the adaptive
grid.
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Figure 3. Depth contour and adaptive grid at t = 0.3s.
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 Figure 4.  3-D surface profile at t = 0.3s. 

2. Solitary Wave Interaction with Circular Cylinder

Boussinesq (1872) was the first to derive shallow 
water wave models containing representations of 
both of non-linearity and dispersion. Over the last 50 
years many different versions of Boussinesq-type 
equations have appeared, aiming at practical 
problems in coastal engineering. Herein the version 
of the two-dimensional Boussinesq-type equations 
due to Madsen and Sørenson (1992) is used. These
equations are written as:

hgfq
yxt

(3)

where q, f, g and h are vectors representing
conserved variables, x-direction fluxes, y-direction
fluxes and source terms, respectively. These vectors
are given by 
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where u and v are the depth-averaged velocity
components in x- and y-directions; d, h and  are the 
total water depth, still water depth and free surface
elevation (d = h + ), respectively; bx and by are the 
bed friction stresses; hx and hy are the partial
derivatives of the mean water depth in the two 
Cartesian directions; x and y are the Boussinesq 

dispersive terms, given by 
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The coefficient B is set to 1/15 in accordance with to
Madsen and Sørenson (1992). The only difference 
between the current Boussinesq equations (equations 
3, 4, and 5) and the nonlinear shallow water 
equations (equations 1 and 2) is the presence of
dispersive terms in the source vector of the 
Boussinesq equations. This implies that the current
Boussinesq equations may be solved similarly to the
non-linear shallow water equations if the dispersive 
terms are properly accounted for (Weston, 2004).

In the present work, the Boussinesq equations are 
used to model wave dynamics in the entire domain
except in cut-cells containing fluid at the curved
boundary where a cut-cell based shallow water 
equation solver is used locally. Extensive tests show
that this treatment of the boundaries is robust and the
global accuracy of the solution is not affected.
Because the similarity between the shallow water 
equations and the Boussinesq equations, this is easy 
to implement numerically by including a switch
controlling whether or not the dispersive terms x
and y are included.

Figure 5 presents spatial profiles of the free surface 
along the centre-line for a solitary wave interaction 
with a circular cylinder at various times. In this test 
case, the water depth is h = 4cm, the input wave 
height is H = 1.6cm and the cylinder radius is a =
6.35cm. General views of the free-surface at three 
typical times t = 0.8s, t = 1.28s, and t = 1.68s are 
given in Figure 6, showing the wave-structure 
interaction. Additional details on wave run-up with
various degrees of input wave non-linearity are given 
in Figure 7, for the case when the undisturbed water 
depth is equal to the cylinder radius h/a = 1.0,

These results demonstrate that our new numerical
implementation of a well-known Boussinesq model
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is robust, and able to simulate strongly non-linear 
waves propagating and interacting with curved
coastal structures.
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Figure 5. Spatial profiles of free surface along the
centre-line at various times 

Figure 6. 3-D free surface profiles at three typical
times t = 0.8s, t = 1.28s, and t = 1.68s.
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Figure 7. Wave run-up with different non-linearity 

CONCLUSIONS

This paper presents a new method for the numerical 
solution of Boussinesq equation sets based on 
efficient mesh discretisation using Cartesian cut-
cells. The approach is applicable to a wide range of 
problems arising in coastal engineering involving 
complex geometries. Based locally on the non-linear 
shallow water equations (NSWE) with shock
capturing, the extra dispersive components in the
Boussinesq equations are treated as simple source 
terms. The results are shown to be accurate, and the 
model is robust and easy to apply. Further examples 
of wave-structure interaction including comparisons
to experiments on model offshore wind turbine 
foundations are ongoing.
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