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Introduction and Objectives: 
In this study we deal with the scattering of a plane sound wave impinging on a floating circular and 
flexible plate. Particular attention will be given to the use of the flexibility of the plate as a mean of 
active noise control. Such problem was considered by the second author last year considering the 
use of external pressure to minimise the far field intensity of the scattered sound [1]. Eigenfunction 
expansion based on spheroidical functions was used and an approximation for a centred pressure 
force was derived for the low frequency limit. Here a computational approach is developed aiming 
to calculate the scattered sound wave and to optimize the external pressure acting on the plate so it 
will mimic a surface of zero impedance, i.e. a free surface. The result will be hiding or at least 
reducing significantly the acoustic signature of the plate to a detection device. 
 
   The interaction between sound and floating structure is of importance not just for issues of 
detection but also for structural integrity, e.g. metal fatigue. Of course the considered problem is of 
reduced complexity (e.g. plane incoming sound wave, circular plate), however it is hoped that this 
study will lead to further work on more generalized floating bodies and conditions. 
 

Mathematical and Numerical Formulation: 
Linear acoustics and plate dynamics is assumed. The plate is taken as circular and floating over the 
water. A pure tone incoming plane wave propagating perpendicular to the plate is assumed, thus the 
problem becomes axisymmetric. Two calculation methods are used. The first method is a spectral 
decomposition method based on the Fourier-Bessel expansion and the second method is a 
simulation technique, based on time marching the sound wave equation. The latter is achieved using 
finite-difference-central-schemes of second and fourth orders in time and space respectively. 
However, this method will only be used to validate the results of the spectral decomposition method 
and thus the emphasis in this section is on the spectral method. 
 
   The governing sound field equation in the space-frequency domain is the Helmholtz equation; 
 ( ) 022 =+∇ pk .  (1) 
p is the sound pressure, 0ck ω= , ω is the incoming wave frequency and c0 is the speed of sound. 
The plate is positioned at z=0 and thus the boundary condition at that plane is taken as; 
 p = 0, at r > a,  (2a) 
 ∂p/∂z = ρω2w, at r < a (2b) 
where the co-ordinate z points down (towards increasing depth), a is the plate’s radius, ρ is the fluid 
density and w is the plate’s deflection. The water-air interface is assumed to be at rest and having 
zero impendence. The plate is assumed to have infinite impendence. Modifying the scheme to 
account for a finite impendence of the plate is straight forward. The plate deflection w is taken as 
governed by the following equation [2]; 
 ( ) fpwhD p +=−∇ 24 ωρ . (3) 
D is the plate’s rigidity, ρp is its density, h is its thickness and f is an external pressure allowing us 
to control the plate’s deflection.  
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   Following Eq. (1) the acoustic pressure p can be expressed as; 
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This method of solution is similar to the method used to investigate the super directive sound field 
emitted by a low speed jet (e.g. [3]). However, the Fourier series in Eq. (4) is taken as finite since a 
finite computational domain is assumed. Eq. (5) shows that high wave numbers are non-radiative 
(decays exponentially in the z direction) and low wave numbers are radiative. ki is determined by 
the boundary condition used at the edge of the computational domain, i.e. at r=R. Computational 
experimentation found that the simple boundary condition of ( ) 0"

0 =RkJ i  although is reflective in 
general, is satisfactory for our purposes as long as the computational domain is large in the radial 
direction. This is mainly because the incoming plane wave is taken as propagating in the z direction. 
 
The coefficients Ai are determined by requiring the acoustic pressure p to comply with the 
boundary conditions at z=0, Eqs. (2). Dividing the edge of the computational domain at z=0 to N 
segments then Ai for i=1…N can be determined by complying the boundary conditions at the mid 
points of those segments. At the free surface this yields; 
 ( ) arrkJA j

N

i jii >=+∑ =
,01

0 0 , (6) 
and at the plate’s surface; 
 ( ) arwkjrkJsA j

N
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0 0 ρω . (7) 
w the deflection is calculated using central finite difference schemes approximating Eq. (3) and 
leading to  
 ( )[ ]m
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L-1 is a finite difference matrix. Symmetry boundary conditions are used at the plate’s centre (r=0) 
and simply hinged, clamped or free conditions are used at the plate’s edge (r=a), see [1]. Eqs. (6) to 
(8) result in a full matrix equation for the coefficients Ai, which can be solved using LU 
decomposition [4]. This is basically a collocation method. However, numerical experimentation 
showed that the matrix may become ill conditioned, i.e. close to singular, when under certain 
loading causing difficulties to the matrix solver. Therefore a least square operation was added with 
respect to Ai and with a linear weight function of r. It led to a better conditioned matrix. 
 
   Our aim in this work is to mimic sound wave reflection from the plate as it were reflected from a 
surface of zero impendence, i.e. free surface. For this purpose the following target (cost) function 
was constructed; 
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If J=0 the sound field is as of reflected only by the free surface. M is the highest wave mode which 
is still radiative. The contribution of the non-radiative modes is damped in J by the weight of the 
square of the wave mode number to emphasize the need to minimize the radiative modes. 
Numerical experimentation showed that neglecting all together the non-radiative modes in J led to 
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similar results. Minimization of J was achieved by varying f and using the Powell’s optimisation 
algorithm, which is widely available [4]. 
 
Results and Conclusions 
The spectral method of solution was validated for the case of a rigid plate by comparing its results 
with results obtained from the simulation method. Good agreement was achieved. The finite 
difference solution of Eq. (3) was validated by comparing it to known analytical static load 
solutions [5], showing convergence of second order accuracy as required. 
 
   An aluminium plate of 0.04” (1 mm) thickness with a radius of 1m was assumed. The speed of 
sound was taken as of fresh water (1500 m/s) and the incoming acoustic pressure amplitude was 
taken as of 1 Pa (Sound Pressure Level of 120dB). The shown results are for pure tone of 5000 Hz 
(low to mid frequency sonar range) and a simply hinged plate. Other plate conditions such as 
clamped or free can be investigated similarly. The contour levels of the acoustic pressure level |p| 
are shown in Figure 1 when no external pressure f is applied on the plate. As expected, there are two 
sound field patterns. One pattern (far field) is far from the plate which is of sound reflected from a 
free surface and the other (near field) is of reduced sound level above the plate, surrounding a beam 
of reflected sound around the plate’s centre (r≅0). When applying the external pressure f and 
optimising every value at each node over the plate, the target function J was reduced by about 50dB, 
i.e. 10 log10(Jf=0/Joptimised f) is about 50. This resulted in the contours of Figure 2 showing a sound 
field as it were reflected from a free surface. However, looking at the distribution of f along the 
plate as seen in Figure 4, there are some point to point oscillations. Their distribution suggests that 
assuming a uniform f distribution along the plate may also achieve a good reduction in the target 
function J. Optimising a uniform f but resolving only 512 radial modes (about 10 points per the 
incoming wave length), did not achieve any significant effect on the sound field. Increasing the 
resolution to 1024 modes produced a uniform f which converged to the average of the optimised 
variable f as can be seen in Figure 4. The value of the real part of the uniform f is of the same scale 
as of the incoming wave amplitude, while the imaginary part is much smaller. A reduction of about 
10 dB was achieved in J, resulting in the dominance of a sound field as it were reflected from a free 
surface as seen in Figure 3, as it is the elastic plate were transparent.  
 
   These preliminary results are promising, particularly the success of using an optimised uniform 
pressure load over the plate which is more practical than a variable distributed load. It opens the 
path for further calculations for higher frequencies (above 20 KHz), investigating the effect of an 
oblique incoming wave and the ability of such device to reduce the acoustic signature of a nearby 
floating rigid body of a more complex geometry. 
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Figure 1: Contour levels of the acoustic 
pressure level varying from 0.1 to 1.9 and 
when no external pressure f is applied and for 
5000 Hz. Number of calculated modes N is 
512. 

Figure 2: Contour levels of the acoustic pressure 
amplitude when optimised external pressure f is 
applied and allowed to vary along the plate. Rest 
of conditions are as in Figure 1. 
 

 
Figure 3: Contour levels of the acoustic 
pressure amplitude when optimised external 
pressure f is applied but taken as uniform 
along the plate. N is 1024. 

Figure 4: The distribution of the optimised external 
pressure f along the plate. N is the number of 
calculated modes. 
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