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I. INTRODUCTION

Several studies have shown that wave fields which are ‘out of equilibrium’ can give rise to exaggerated nonlinearity
due to enhanced wave-wave interactions [1–3]. Previous studies have also shown that nonlinear wave-wave interactions
can alter the characteristics of an extreme wave event in the context of a random sea [4–6] as well as an isolated wave
group [7–8]. In this study, we have performed numerical simulations of steep three-dimensional wave groups, formed
by the dispersive focusing, using the fully-nonlinear potential flow solver OceanWave3D. We consider the influence
of directional spreading and the high-wavenumber tail of the spectrum on the nonlinear wave-wave interactions. We
perform simulations based on Gaussian as well as JONSWAP omnidirectional spectra, combined with both frequency
dependent and independent spreading functions. Our simulations indicate that the localised nonlinear features of an
individual steep wave event, including group shape and kinematics, may also depend on the spectral equilibrium of
the initial sea-state. We conclude that focused wave events in sea-states with low directional spreading or sea-states
without a fully-developed spectral tail are more likely to exhibit attributes of nonlinearity.

II. NUMERICAL SIMULATIONS

OceanWave3D numerically solves the governing equations of potential flow for surface gravity waves with the
nonlinear free-surface boundary conditions [9]. A numerical wave-tank 7.68 km in length (L), 2.56 km in width (W )
and 112 m in depth (d ) has been employed. The simulated wave groups have a characteristic wavelength (λ0) of
225 m and characteristic wave period (T0) of 12 s—based on the initial peak of the wavenumber spectrum (kp). The
water is approximated as ‘deep’ with kpd = 3.142 and a symmetry plane has been implemented along the centreline
of the wave group. We combine eighth-order finite differencing in space with classic fourth-order Runge–Kutta time
marching. A detailed assessment of simulation fidelity has been previously performed [10] which informs our selection
of the discretization parameters, listed in Table I. We perform simulations based on JONSWAP as well as Gaussian
spectra and use a finer grid resolution for the JONSWAP cases to resolve the tail components. Simulations have been
performed both excluding and including the nonlinear terms in the free-surface boundary conditions, to highlight the
influence of wave-wave interactions. All boundary conditions have been calculated at the mean water level (z = 0) for
the linear simulations. The initial conditions have been calculated for 15 characteristic wave periods before the time
of linear focus (t/T0 = −15), using the linear dispersion relation, and time-marched for 30 wave periods. We apply
exact second-order corrections to the initial conditions based on Dalzell [11] and an approximate form of third-order
correction [10]. The variance density spectrum, F (k, θ), has been implemented as the product of an omnidirectional
spectrum S(k) and a spreading function D(θ). Two types of omnidirectional spectrum have been considered, a Gaussian
spectrum and a JONSWAP spectrum with γ = 3.3. The spectral peak is located at kp = 0.02796 m−1 for both the
Gaussian and JONSWAP spectra and a bandwidth of kw = 0.004606 m−1 has been used for all the Gaussian cases.
Note that a Gaussian spectrum represents a close approximation to the peak of a JONSWAP spectrum with γ = 3.3.
Thus, we contrast our simulations of Gaussian and JONSWAP spectra to investigate the significance of the spectral
tail. Two different spreading functions have been implemented: a frequency-independent Gaussian spreading function
and the frequency-dependent spreading function of Ewans [12]. The spreading parameter of the Gaussian (ς0) has
been varied between 5◦ and 25◦ in increments of 5◦. Following the theory of quasi-determinism [13], the scaled
autocorrelation function has been used to calculate the surface elevation of the wave group, η(x, y, t):

η(x, y, t) = AL

∑
i F (ki, θi) cos (ki cos θi x+ ki sin θi y − ωit+ ϕ0)∑

i F (ki, θi)
. (1)

Here, ki is the magnitude of the wavenumber for each component, θi is the direction of propagation, AL is the linear
amplitude of the wave group at focus (t/T0 = 0) and the angular frequency of each component (ωi) is calculated from
the arbitrary-depth linear dispersion relationship, ωi =

√
gki tanh (kid), based on the gravitational constant (g) and

the depth of the domain (d). The phase offset (ϕ0) is defined relative to a 0◦ baseline and additional values of 90◦,
180◦ and 270◦ have been simulated for linearisation of the wave spectrum [10]. The scaled autocorrelation function is

TABLE I
DISCRETIZATION PARAMETERS.

Grid Nx Ny Nz ∆x ∆y ∆t
Gaussian 1024 256 8 7.5 m 10 m 0.2s

JONSWAP 2048 512 8 3.75 m 5 m 0.2s
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Fig. 1. Amplitude spectra of surface elevation for case GG15 with a steepness of ALkp = 0.30: (a) initial condition, t/T0 = −15; (b) nonlinear
focus, t/T0 = 1.3; (c) post-focus, t/T0 = 15. Contour levels are evenly distributed between 0.01 m and 0.0105 m in intervals of 0.005 m.

known to represent the average shape of the largest waves in a linear sea, as described by Boccotti [13], and has thus
been used in this study as a model for a steep wave group.

III. DIRECTIONAL ENERGY TRANSFERS DUE TO THIRD-ORDER INTERACTIONS

The wave spectrum has been calculated with a Discrete Fourier Transform (DFT) of the surface elevation, extracted
at every time step from the simulations and linearised using four-phase separation [10]. We base our analysis in this
section on a wave group comprised of a Gaussian omnidirectional spectrum and a Gaussian spreading function with
an initial spreading parameter (ς0) of 15◦ (the case is denoted as GG15) with a linear steepness of ALkp = 0.30.
Figure 1 depicts contour plots of the linearised amplitude spectrum in wavenumber space for: the initial condition,
t/T0 = −15; the time of nonlinear focus, t/T0 = 1.3; and the end of the simulation, t/T0 = 15. The initial condition in
Fig. 1(a) is narrow-banded and remains narrow-banded during the early stages of focusing due to the low-steepness of
the initially dispersed wave group. However, evolution of the amplitude spectrum due to wave-wave interactions occurs
as the wave group steepens and approaches focus. In particular, energy transfer to high-wavenumber components is
evident in Fig. 1(b), with a directional-bias at angles of ±35.26◦ to the spectral peak, accompanied by unidirectional
energy transfers along the kx-axis. As a consequence of wave-wave interactions, a high-wavenumber sidelobe forms
and the amplitude spectrum at nonlinear focus also exhibits a contraction of the spectrum along the ky-direction, which
implies lateral expansion of the wave group and reduced directional spreading at focus. After nonlinear focus, Fig.
1(c), the amplitude spectrum continues to broaden with directional energy transfer to high-wavenumber components at
a ±55◦ angle. Qualitatively similar results have been observed by Adcock and Taylor [7] using the Modified Nonlinear
Schrödinger equation. Thus, all spectral changes can be attributed to resonant third-order interactions, since the MNLS
equation is only capable of resolving third-order/four-wave interactions as shown by Stiassnie [14].

IV. AUGMENTED KINEMATICS DUE TO SPECTRAL EVOLUTION

Energy transfers to higher wavenumbers are associated with augmented kinematics since the velocities of the wave
field scale with the angular frequencies of the wave components. Furthermore, the reduction in directional spreading,
which occurs during focusing, increases the in-line velocity component. Figure 2 shows the surface elevation at focus for
the linear, Fig. 2(a), and nonlinear, Fig. 2(b), version of the event—lateral expansion and reduced directional spreading
are apparent for the nonlinear event. Assuming drag-dominant loading, force on a vertical surface-piercing column can
be estimated with the drag term of the Morison equation:

FD =

∫ η

−d

1

2
CDρAu(z)|u(z)| dz. (2)

Here, u(z) represents the horizontal velocity which varies in the vertical, z-direction. The constant CD depends on
geometry, Reynolds number and the frontal area of the body (A) as well as the density of the fluid (ρ). The total force
acting on a bottom-mounted, surface-piercing structure is given by integration in the z-direction from depth d to the
surface elevation η. The integral in Eq. (2) has been evaluated at the (x,y) location where focus occurs, and a time
history of the force at this spatial location plotted in Fig. 2(c) for both the linear and nonlinear scenarios of case GG15
with a steepness of ALkp = 0.30. As expected, linear focus occurs at t/T0 = 0 at the spatial location: x/λ0 = 0,
y/λ0 = 0. However, the competing effects of nonlinearity and dispersion cause the nonlinear event to focus later
t/T0 = 1.3 at the spatial location: x/λ0 = 1.535, y/λ0 = 0. Separate axes have been used in Fig. 2(c) for the linear
and nonlinear cases for clarity. The maximum drag of the nonlinear scenario is 24% higher than the linear scenario,
as a result of energy transfers to higher wavenumbers and the reduced spreading of the nonlinear focused event.

GG5 GG10 GG15 GG20 GG25 JG15 JE
Ave. Ni 21.16 20.18 19.70 19.35 19.09 19.84 18.54
Max Ni 25 21 21 21 21 29 27

TABLE II
AVERAGE AND MAXIMUM NUMBER OF GMRES ITERATIONS PER TIME STEP FOR CASES SHOWN IN FIG. 3(b).
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Fig. 2. Comparison of linear and nonlinear evolution for case GG15 with a steepness of ALkp = 0.30: (a) Surface elevation at the time of focus,
t/T0 = 0.0, for the linear version of the event; (b) Surface elevation at the time of focus, t/T0 = 1.3, for the nonlinear version of the event. The
formation of ‘wing waves’, localised regions of elevation due to energised oblique components, is demarcated with W; (c) Time-history of force
calculated from the drag term of the Morison equation, normalised by the maximum drag force of the linear case FDL. The linear case is depicted
by the black line ( ) and the nonlinear case is depicted by the magenta line ( ). The time-history of force is calculated at the spatial location
where focus of the wave group occurs: x/λ0 = 0, y/λ0 = 0 for the linear case and x/λ0 = 1.535, y/λ0 = 0 for the nonlinear case.

V. STABILISING EFFECT OF SPREADING AND THE HIGH-WAVENUMBER TAIL

The Gaussian function represents an analytically attractive option for modelling wave spectra and the peak of the
JONSWAP spectrum contains the vast majority of the total energy. Gaussian omnidirectional spectra are frequently
used in studies of wave-wave interactions and the high-wavenumber components of the spectral tail neglected from
the analysis. Thus, a comparison between Gaussian and JONSWAP spectra serves two purposes: (1) to indicate the
appropriacy of a Gaussian spectrum as a model for the peak of a JONSWAP spectrum in general and; (2) to contrast
the spectral evolution of a steep wave event in seas with and without a fully-developed spectral tail. We combine a
JONSWAP omnidirectional spectrum (γ = 3.3) and a Gaussian spreading function with an initial spreading parameter
of ς0 = 15◦, and denote this case as JG15. Similarly, we combine a JONSWAP omnidirectional spectrum with the
frequency dependent spreading function of Ewans [12] and denote this case as JE. We compare against two cases based
on a Gaussian omnidirectional spectrum: one with an initial spreading parameter of ς0 = 15◦, denoted as GG15, and
another with an initial spreading parameter of ς0 = 20◦, denoted as GG20. The comparison is based upon a mean
wavenumber K(t) for the spectrum:

K =

∑
i kia(ki, θi)∑
i a(ki, θi)

, (3)

defined as the ratio of the first spectral moment and the zeroth spectral moment for the amplitude spectrum. Here, the
wavenumber, direction and amplitude of each component is denoted by ki, θi and a(ki, θi) respectively. Figure 3(a)
shows the mean wavenumber K(t) over the course of the simulation for each case, normalised by the initial value
K0, and indicates that simulations performed with a Gaussian omnidirectional spectrum produce an increase in mean
wavenumber over the course of the simulation, irrespective of the initial spreading parameter. However, the simulations
performed with a JONSWAP spectrum, cases JG15 and JE, indicate a different trend; the mean wavenumber remains
approximately constant during the early stages of evolution and reduces during focus. Thus, the increase in mean
wavenumber observed for the Gaussian cases, GG15 and GG20, appears to be associated with redevelopment of the
initially-absent high-wavenumber tail. Focused wave events with broader bandwidths and high values of directional
spreading exhibit a reduced focal time due to linear mechanisms of dispersion. Thus, an increase in directional spreading
and inclusion of the high-wavenumber tail may be expected to reduce the nonlinear features of an extreme wave event
in an integral sense. However, we have also considered the rates of energy transfer which arise for the wave groups
during the steepest stages of evolution. The growth rate calculation is based on the component which initially coincides
with the peak of the wavenumber spectrum. The wave action density spectrum has been calculated from the amplitude
spectrum [15] and a dimensionless growth rate calculated:[

∂A(ki, θi)/∂t
]
T0
/
A(ki, θi) = O(ε2ω0T0). (4)

based on the wave action density of the component, A(ki, θi). Note that the RHS of Eq. (4) is the dynamic O(ε2ω0T0)
timescale associated with nearly-resonant interactions [16]. The effect of the high-wavenumber tail on the rates of
energy transfer is summarised in Fig. 3(b) which shows the maximum growth rate for the spectral peak, observed at
any point in the simulation, on the ordinate. The abscissa shows the corresponding spreading parameter (ς), at the time
that the maximum growth rate occurs. Directional spreading reduces the maximum growth rate for the Gaussian cases.
Cases GG15 and JG15 exemplify the role of the high-wavenumber tail in suppressing rates of energy transfer; the two
cases exhibit a similar spreading parameter but the maximum growth rate for case GG15 is a factor of three faster
than case JG15. The slower growth rate for case JG15 is particularly unexpected because the JG15 focused wave event
is arguably steeper than the GG15 event. The linear steepness has been calculated from ALkp which incorporates the
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Fig. 3. The stabilising effect of directional spreading and the high-wavenumber tail for wave groups with a steepness of ALkp = 0.24: (a) mean
wavenumber K(t) normalised by the initial value K0 for cases: GG15 ( ), GG20 ( ), JG15 ( ), JE ( ). (b) Maximum growth rate
for the component initially coinciding with the spectral peak, plotted against the RMS spreading parameter ς(t) at the corresponding time. An
estimate of the ‘dynamic’ growth rate O(ε2ω0T0) associated with near-resonant interactions is indicated (− · −− · −− · −).

spectral peak, at the start of the simulation, as the characteristic wavenumber. However, a JONSWAP omnidirectional
spectrum features a high-wavenumber tail which should result in a characteristic wavenumber above kp, suggesting a
steeper wave event than indicated by the parameter ALkp. A proxy for steepness is the number of iterations required
at every time step by the GMRES algorithm in OceanWave3D. The iteration count has previously been shown to be
grid independent when combined with the multi-grid preconditioning scheme we have used in this study. Thus, the
finer grid resolution of the JONSWAP cases does not significantly influence the iteration count and we can compare
the GMRES iteration count for the Gaussian and JONSWAP cases as an approximate indicator of nonlinearity. Table
II lists the average and maximum number of GMRES iterations for each case. The JONSWAP cases, JG15 and JE,
both list maximum iteration counts in excess of all the GG cases. However, the maximum growth rate for case GG15
is significantly higher than the maximum growth rate for case JG15. Thus, the high-wavenumber tail, in particular,
appears to suppress the rates of energy transfer for the spectral peak. Suppression of the spectral evolution is, thus,
not only due to the reduced focal time of broadbanded events. Rather, the rates of energy transfer are also suppressed
even at the steepest stages of focusing. Thus, directional spreading and the high-wavenumber tail appear to be integral
features of a form of spectral equilibrium which suppress the nonlinear attributes of a steep, focusing wave group.

VI. ENGINEERING RELEVANCE

We show that focused wave events in sea-states without a fully-developed spectral tail are more likely to exhibit
attributes of nonlinearity. Certain physical processes are known to suppress the development of the high-wavenumber
tail, including wave blocking by currents and energy dissipation by ice sheets, which could influence the characteristics
of focused wave events in the immediate vicinity. Furthermore, a Gaussian omnidirectional spectrum is frequently used
as a simplified input to simulations / analytical models and our work suggests that redevelopment of the spectral tail
could result in exaggerated nonlinearity for individual wave events in such analyses.
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