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Highlights

• Blocking dynamics of flexural-gravity wave motion in two-layer fluid is revisited.
• The movement of the loci of the roots of the dispersion relation in the complex plane with an increase in

wave frequency within primary and secondary blocking is demonstrated.
• Energy identity is established for scattering of flexural gravity waves due to a crack in a floating ice sheet

in the frequency band where the dispersion relation possesses four positive real roots.

1. Introduction

A typical feature of the polar regions is the ice covered ocean surface in which waves generated in open sea
could penetrate far into the ice-covered sea surface. The characteristics of the surface gravity waves will change
due to its interaction with the ice sheet to generate the flexural gravity waves. One of such problems is the study
on the scattering of flexural gravity waves due to a crack in an infinitely extended floating ice sheet [1, 2, 3].
Bhattacharjee and Sahoo [4] investigated the scattering of flexural gravity waves due to an infinitely extended
floating ice sheet in a two-layer fluid having an interface in the absence of lateral compressive force. Das et
al. [5, 6] demonstrated that in the presence of compressive force, flexural-gravity wave blocking occurs in
which the group velocity vanishes in both the cases of single-layer and two-layer fluid domains respectively. In
the frequency band between primary and secondary blocking in a two-layer fluid having an interface, flexural-
gravity wave propagates with negative energy flux where the dispersion relation associated with flexural-gravity
wave often possesses four positive real roots. Out of the four roots, three roots occur in the surface mode and
one in the interface mode when blocking occurs in the surface mode, whilst one root occurs in the surface
mode and three in the internal mode when blocking occurs in the interface mode. On the other hand, the
dispersion relation possesses two real roots (one in surface mode and other one in the interface mode) outside
the frequency band. In the proposed study, flexural-gravity wave scattering is considered in the presence of
compressive force to further understand the loci of the roots of the dispersion relation in the complex plane and
establish the energy identity when multiple propagating modes occurs within a frequency band during wave
blocking.

1. Mathematical formulation

Figure 1: Floating ice sheet having a crack in a
two-layer fluid

In the present study, we consider the flexural gravity wave
scattering by a straight line crack in a floating ice sheet
in the presence of lateral compressive force in a two-layer
fluid of infinite depth. The physical problem is analyzed
under the assumption of linear water wave theory and small
amplitude structural response of the floating ice sheet. The
ice-sheet is modelled as two semi-infinite elastic plates
separated by a crack at (x, y) = (0, 0) (see Figure 1).
The physical problem is considered in the two-dimensional
Cartesian coordinate system. The upper fluid layer of con-
stant density ρ1 occupies the region −∞ < x < ∞,
0 < y < h, with y = 0 being the mean ice covered sur-
face. The lower layer fluid density ρ2(> ρ1) occupies the



region −∞ < x < ∞, h < y < ∞ with the interface being at at y = h. The fluid is assumed to be inviscid
and incompressible, and the flow is irrotational and simple harmonic in time with angular frequency ω which
ensures the existence of a velocity potential Φ(x, y, t) of the form Φ(x, y, t) = Real{φ(x, y)e−iωt}. Assuming
that the x-axis is in the horizontal direction and the y-axis in the vertical downward positive direction. Thus,
the spatial velocity potential φ(x, y) satisfies the partial differential equation

∇2φ = 0, in the fluid region. (1)

On the ice covered mean free surface, the boundary condition is given by(
D
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where D = EI/(ρ1g − dρpω2), Q = N/(ρ1g − dρpω2), K = ρ1ω
2/(ρ1g − dρpω2), EI = Ed3/12(1 − ν),

E is Young’s modulus, d is plate thickness, ρp is plate density, ν is Poisson’s ratio, N (Newton·m−1) is the
uniform compressive stress. The linearized condition at the mean interface is given by (as in [4])
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where s = ρ1/ρ2. The condition at the bottom bed is given by

φ, | ∇φ |−→ 0 as y −→∞ (4)

Moreover, across the interface boundary between the two plate-covered regions, the continuity of velocity and
pressure yields

φx(0+, y) = φx(0−, y) and φ(0+, y) = φ(0−, y) for 0 < y <∞. (5)

Further, assuming the free-edge conditions (zero bending moment and shear stress) are complied near the crack,
the velocity potential φ(x, y) satisfies the following edge conditions:
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Finally, the velocity potential satisfies the far-field radiation condition of the form
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(7)

The eigenfunctions Fn(y) are

Fn(y) =

{
gn(y) = Kσ−kn

K(σ−1)e
−kn(y−h) + K−kn

K(σ−1)e
kn(y−h) 0 < y < h

ekn(h−y) h < y <∞
for n = I, II, 3, 4.

where σ = (1 + s)/(1 − s) and kn; (n = I, II, 3, 4) represents four propagating modes as discussed in Das
et al. [6] , Rn and Tn are the complex constants associated with the amplitude of the reflected and transmitted
waves in the nth mode where εn = ±1 when dω

dk ≷ 0. Therefore kn’s satisfies the dispersion relation in k as
given by

(K − k)
{
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(
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)
+K

}
e−kh + (k − σK)

{
k
(
Dk4 −Qk2 + 1

)
−K

}
ekh = 0. (8)

The movement of the roots of dispersion relation in the complex plane with increasing values of incoming
wave frequencies is graphically shown in Figure 2. Figure 2(a) reveals that four real roots ±kI , ±kII and four
complex roots ±kIII , ±kIV with kIV = k̄III . As the incoming wave frequency increases, the roots from the
complex plane travel towards the real axis and merge to create the secondary blocking (see figure 2(b)). The
merging happens for the complex roots kIII , −kIV with kIV , −kIII respectively, to generate the critical points
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(a) Before secondary blocking
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(b) Loci of secondary blocking (modes swapping occur)
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(c) Inside the frequency band between primary and secondary blocking.
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(d) Loci of primary blocking point (modes swapping occur)
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(e) After primary blocking

Figure 2: Contour plot of dispersion relation for different values of incoming wave frequencies are shown.
The location of the roots are shown with the small circles which moves in the complex plane with changing
frequency (a) for two real roots (ω = 0.25 s−1), (b) during secondary blocking (ω = 0.2808 s−1), (c) four real
roots (ω = 0.41 s−1), (d) during primary blocking (ω = 0.4475 s−1), (e) for two real roots (ω = 0.47 s−1)
when compressive force Q = 1.95

√
D and density ratio s = 0.85 when wave blocking occurs in the surface

mode.

±kc that bifurcate into real roots. In order to distinguish the newly generated real roots from the earlier complex
ones, we term them as ±k3 and ±k4. Then, these roots start travelling away from each other to create in total
eight distinct real roots (see figures 2(c)). A further increase in frequency ensures a coalition of the two real
roots to generate primary blocking (see figure 2(d)). Coalescence occurs between the roots ±kI and ±k4 to
create the critical wave number ±k′c. Finally, ±k′c bifurcates to regenerate the complex roots ±kIII and ±kIV



back into the physical system (see figure 2(e)).
To obtain the energy identity, we use the Green’s integral theorem, as given by∫

C

(
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ds = 0. (9)

where C denotes the closed boundary of the fluid region represented as the union of two closed boundaries C1

and C2, φ∗ is the complex conjugate of φ which satisfies Eqs. (1)-(6) and ∂
∂n represents the outward normal

derivative to the closed boundary C. While the closed boundary C1 consists of the horizontal upper surface
(0 < x < X; y = 0), the vertical boundary (0 < y <∞; x = X), the bottom boundary (0 < x < X; y →∞),
and the vertical boundary at the crack (0 < y < ∞; x = 0), the closed boundary C2 consists of the horizontal
upper surface (−X < x < 0; y = 0), the vertical boundary (0 < y < ∞; x = −X), the bottom boundary
(−X < x < 0; y → ∞), and the vertical boundary at thecrack (0 < y < ∞; x = 0). Ultimately, using
the boundary conditions and the far-field radiation condition in (9) and letting X → ∞, the energy relation is
obtained as (
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It may be noted that kI and kII are incident wave numbers in surface and interface modes respectively. Further,
Kr1, Kr2 and Kt1, Kt2 are reflection and transmission coefficients associated with waves in the surface and
interface modes respectively. Few results pertaining to the crack problem in the context of energy identity will
be discussed during the presentation.
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