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Abstract

The number of explicit solutions to the linear shallow-water equation with a variable depth is small.
Such solutions involve reducing the governing equation to one involving special functions whose properties
are well established. Here we introduce what is believed to be a new solution in terms of Bessel functions
and discuss an existing solution in terms of elementary functions. We also develop a connection between
problems of sloshing in containers and scattering by submerged obstacles providing general results for
arbitrary depth variation which we then apply in a limited way to specific cases.

General Theory

Using the linear shallow-water approximation, the free surface displacement η(x) satisfies

d

dx

(
h(x)

dη(x)
dx

)
+

ω2

g
η(x) = 0 (1)

where ω is the radian frequency and we assume the bottom topography h(x), is measured downwards.
One of the few examples where the choice of h(x) results in an explicit solution of (1) for 0 ≤ x ≤ a
is given by h(x) = (hx/a) where h is constant. Then the substitution t2 = x/a reduces (1) to Bessel’s
equation with solution J0(2ka(x/a)1/2). The second solution is rejected as being unbounded at x = 0.
Reflection in x = a then provides the solution for the natural modes of oscillation in a wedge-shaped
basin of depth h and water-line width 2a. The natural frequencies of the oscillations divide into two
types, being the roots of J0(2ka) = 0 and J1(2ka) = 0 corresponding to the modes being odd and even
about x = a respectively. Here k2 = ω2/gh. A comprehensive review of sloshing problems is given in
Faltinsen & Timokha (2009).

This solution can be used to include a wider class of problems, and also extended to cover a more
general h(x). For example if we assume that h(x) = (hx/a) for 0 ≤ x ≤ a and h(x) = h, a ≤ x ≤ b, b ≥ a,
then reflection in x = b produces a trough of depth h and width 2b at the surface sloping down uniformly
to width 2c = 2(b − a) at the bottom. The natural frequencies of the oscillations in the trough again
divide into two types, corresponding to the odd and even modes about x = b given by C sin k(b− x) and
C cos k(b− x) respectively. Matching these modes with η(x) and η′(x) across x = a gives

tan kc = J0(2ka)/J1(2ka), = −J1(2ka)/J0(2ka) (2)

for the odd and even resonant conditions, reducing to the result for the wedge-shaped basin when c = 0.
For a more general topography we choose h(x) = h(x/a)r, 0 < r < 1 for 0 ≤ x ≤ a which, after

reflection about x = b, describes a trough with curved ends intersecting the free surface at x = 0, 2b
vertically. Let ts = (x/a) so that (1) becomes

d

dt

(
ts(r−1)+1 dη(t)

dt

)
1

ts−1
+ κ2η(t) = 0

where κ = kas. If now we assume s(r − 1) + 1 = 0 so that t = (x/a)1−r, then we have

d2η(t)
dt2

+ κ2tmη(t) = 0, m = r(1− r)−1



with solution (Gradshteyn & Ryzhik (1965) p.971, 8.491(7)) in terms of x,

η(x) = (x/a)(1−r)/2Jν(2ka(x/a)1−r/2/(2− r)), ν = (1− r)/(2− r) (3)

for 0 < r ≤ 1 where we have chosen the solution which is bounded as x → 0 since η(x) ∼ x1−r, x → 0,
the other solution ruled out as being singular at x = 0. We have

η(a) = Jν(2ka/(2− r)), 2aη′(a) = (1− r)Jν(2ka/(2− r)) + 2kaJ ′
ν(2ka/(2− r))

so the resonant frequencies in the trough are given by

(1− r)
2ka

+
J ′

ν(2ka/(2− r))
Jν(2ka/(2− r))

= − cot kc, or tan kc (4)

For r = 1 equation (3) reduces to η(x) = J0(2ka(x/a)1/2) and the resonant conditions reduce to
J ′

0(2ka)/J0(2ka) = − cot kc, or tan kc, in agreement with (2). Finally when c = b− a = 0 we recover the
conditions J0(2ka) = 0 and J ′

0(2ka) = 0 in agreement with the known wedge-shaped solution.
We can generalise this bottom shape by assuming h(x) is defined by

h(x) = h(r)(x) = h1(1 + βx/a)r, 0 ≤ x ≤ a, (1 + β)r = h2/h1 (5)

for 0 < r ≤ 1 and for r = 2, so that h(r)(0) = h1, h(r)(a) = h2 where 0 ≤ h1 ≤ h2 ≤ h. For r = 1 the
bottom slope is constant from a depth h1 at x = 0 to h2 at x = a. For 0 < r < 1 the bottom is a curve
with slope at x = 0 greater and at x = a less than for r = 1 with the converse being true if r = 2. We
find, after substituting t = (1 + βx/a)1−r that in terms of x,

η(x) = ((1 + βx/a)(1−r)/2Zν(2k1a(1 + βx/a)1−r/2/β(2− r)), 0 < r ≤ 1 (6)

where k2
1h1 = k2h and ν = (1− r)/(2− r), and Zν(z) stands for the Bessel functions Jν(z), Yν(z) or any

linear combination of them.

If we now assume that for x ≥ a, h(r)(x) = h, a constant, and h(r)(x) is symmetric about x = 0,
then by reflection the bottom boundary becomes a submerged mount in water of depth h in the shape
of a rectangle with vertical sides extending down from a depth h2 to h topped by the particular h(x) in
0 ≤ x ≤ a given by (5).

Thus we have a scattering problem for all x so that

η(x) = e−ikx + Re−ikx x ≥ a, η(x) = Te−ik(x+a) x ≤ −a. (7)

Because of symmetry we can write η(x) = η0(x) + η1(x) where η0(x) and η1(x) are odd and even
respectively about x = 0 so that η0(0) = 0, η′1(0) = 0. Then it follows that R = (R0 + R1)/2 and
T = (R0−R1)/2 where the Ri, (i = 0, 1) satisfy the first equation in (7). Matching ηi(x) and flux across
x = a results in

Ri = e−2iθi where tan θi = δi =
(

h2

kh

)
η′i(a)
ηi(a)

(i = 0, 1) so that (8)

|R|2 =
(1 + δ0δ1)2

(1 + δ0δ1)2 + (δ0 − δ1)2
|T |2 =

(δ0 − δ1)2

(1 + δ0δ1)2 + (δ0 − δ1)2
(9)

As an example we assume r = 1 in (6). Then

η(x) = Z0(κ(1 + βx/a)1/2), κ = 2k1a/β (10)

and a particular combination of J0, Y0 which satisfies η0(0) = 0, η′1(0) = 0 is

ηi(x) = Ci(J0(κt)Yi(κ)− Y0(κt)Ji(κ)), (i = 0, 1), t = (1 + βx/a)1/2, (11)



Thus from (8) we obtain

δi = −µ

(
J1(κα)Yi(κ)− Y1(κα)Ji(κ)
J0(κα)Yi(κ)− Y0(κα)Ji(κ)

)
, µ =

(
h2

h

)1/2

α = (1 + β)1/2 (12)

As a check we let β → 0 so that h2 → h1 and we have a rectangular mount of width 2a submerged
to a depth h1 in water of depth h. Then µ → (h1/h)1/2, β → 0 and κ → ∞, κα ∼ κ + k1a. Then using
the results

Ji(z) ∼ (
2
πz

)1/2 cos(z − π(1 + 2i)/4), Yi(z) ∼ (
2
πz

)1/2 sin(z − π(1 + 2i)/4), (i = 0, 1)

as z →∞, we obtain δ0 → µ cot k1a, δ1 → −µ tan k1a, so that from (9)

|R|2 =
(1− µ2)2 sin2 2k1a

4µ2 + (1− µ2)2 sin2 2k1a
, |T |2 =

4µ2

4µ2 + (1− µ2)2 sin2 2k1a
(13)

in agreement with Mei (1983) p.132.

A known solution of (1) is possible for h(r)(x) given by (5) with r = 2. Note that in this case α, β, κ,
and µ are defined differently, so that for example α = (1 + β) = (h2/h1)1/2. Let (1 + βx/a) = et. Then
(1) becomes

d2η(t)
dt2

+
dη(t)
dt

+ κ2η(t) = 0 (14)

having the general solution η(t) = e−t/2(A sinλt + B cos λt) where λ = (κ2 − 1/4)1/2 and κ = (k1a/β)
and we assume k1a > β/2 since we wish to let β → 0 later.
The odd and even solutions are given by

η0(x) = C0e
−t/2 sinλt, η1(x) = C1e

−t/2(2λ cos λt + sinλt) (15)

satisfying η0(0) = 0, η′1(0) = 0 respectively, where t = log(1 + βx/a) so that t = 0 when x = 0 and
t = log α when x = a. Now

η′0(x) = βa−1e−tη′0(t) = C0βa−1e−3t/2(λ cos λt− 1/2 sinλt)

η′1(x) = βa−1e−tη′1(t) = −2C1βa−1e−3t/2(κ2 sinλt)

We find from (8) that

δ0 = γ0(cot(λ log α)− 1/2λ), δ1 = −γ1/(cot(λ log α) + 1/2λ) (16)

where γ0 = αµ2(λβ)/ka, γ1 = γ0(1 + 1/4λ2) = γ0κ
2/λ2, and µ = (h1/h)1/2 . Substitution in (9) gives

|R|2 =
A2 sin2(λ log α)

4γ2
0 + A2 sin2(λ log α)

(17)

where A = 2(1− γ0γ1) cos(λ log α) + (1 + γ0γ1) sin(λ log α)/λ.

As a check of (17) we let β → 0 so that h2 → h1 and as before we have a rectangular mount of width
2a submerged to a depth h1 in water of depth h. Then and α → 1, whilst λβ = ((k1a)2−β2/4)1/2 → k1a,
λ log α → k1a and λ → ∞. Thus γ0 = γ1 → µ, and A → 2(1 − µ2) cos k1a so that |R|2 given by (17)
again is in agreement with (13). If in addition we let h1 = h2 → h so that the obstruction disappears,
then µ → 1 and A → 0 and hence |R| → 0 as expected.
Notice that for the rectangular mount R = 0 when sin 2k1a = 0 which Mei (1983) p.133 explains as
contructive inteference between the waves generated at x = ±a. It is not clear from (17) whether this
explains in this case why R = 0 when sinλ log α = 0 where A 6= 0, or when A=0.



A different scattering problem arises if we assume h(x) = h1, x ≤ 0 with a general h(x) for 0 ≤ x ≤ a
and h(x) = h, x ≥ a as before, so that we have the scattering problem

η(x) = eik1x + Re−ik1x, x ≤ 0, η(x) = Teik(x−a), x ≥ a. (18)

For 0 ≤ x ≤ a the equation (1) will, for a wide class of functions h(x), have a general solution of the
form η(x) = Aη0(x) + Bη1(x) being a linear combination of two independent solutions which for ease
of calculation we shall choose to be the functions η0(x) and η1(x) satisfying η0(0) = 0 and η′1(0) = 0 as
before and which can be shown to satisfy the Wronskian-type relation

η1(x)η′0(x)− η0(x)η′1(x) = (h1/h(x))η1(0)η′0(0). (19)

To simplify the analysis, and without loss of generality, we also assume η′0(0) = η1(0) = 1. Then matching
η(x) and flux across x = 0 and x = a gives

1 + R = B, ik1(1−R) = A, T = Aη0(a) + Bη1(a), ikhT = h2(Aη′0(a) + Bη′1(a))

It follows after some algebra, which involves use of the relation (19) when x = a, that

R = (ν0 − iν1/k1)/(ν0 + iν1/k1), T = 2(h/h2)(ν0 + iν1/k1) (20)

where νi = η′i(a)− ikηi(a)(h/h2), (i = 0, 1), and as before µ = (h1/h)1/2. Further manipulation confirms
that the energy relation µ(1− |R|2) = |T |2 is satisfied.
As a check on the result (20) we assume h2 = h1 so that we have a vertical step down at x = a from depth
h1 to h. Then η0(x) = k−1

1 sin k1x, η1(x) = cos k1x, satisfying η′0(0) = η1(0) = 1, η0(0) = η′1(0) = 0, and
we find after some algebra that

R = −(1− µ)
(1 + µ)

e2ik1a, T =
2

1 + µ
eik1a

in agreement with Mei (1983) p.119.

Finally we consider the scattering problem obtained by assuming that h(x) = h1, x ≤ 0 and that
h(x) → ∞, x ≥ 0 noting that this would clearly violate shallow-water theory! The two solutions of
(1), now valid in x > 0, need to be replaced by a single solution ηout(x) describing a solution radiating
outwards in x > 0. Simple matching gives

1 + R

1−R
= − ik1ηout(0)

η′out(0)
=> R = −

(
η′out(0) + ikηout(0)
η′out(0)− ikηout(0)

)
(21)

As an example with h(x) = h1(1 + βx/a)r, x ≥ 0

ηout(x) = ((1 + βx/a)(1−r)/2H(1)
ν (2k1a(1 + βx/a)1−r/2/β(2− r)), (22)

for 0 < r ≤ 1, where H
(1)
ν = Jν + Yν , and if r = 2,

ηout(x) = (1 + βx/a)−1/2eiλ log(1+βx/a). (23)

Conclusion
A solution of the linearised shallow-water equation for a more general bottom topography is given

which is believed to be new. The solution provides the conditions for resonant oscillations in both a
basin and a trough having curved sides. General expressions for the solution of a number of scattering
problems are developed, mostly in terms of odd and even solutions to the shallow-water equation once
they are known. These solutions are presented in a small number of cases which will enable reflection
and transmission coefficients to be computed.
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