Sloshing and scattering in shallow water

D.V.Evans
University of Bristol, U.K.
email: cathdave521@gmail.com

Abstract

The number of explicit solutions to the linear shallow-water equation with a variable depth is small. Such solutions involve reducing the governing equation to one involving special functions whose properties are well established. Here we introduce what is believed to be a new solution in terms of Bessel functions and discuss an existing solution in terms of elementary functions. We also develop a connection between problems of sloshing in containers and scattering by submerged obstacles providing general results for arbitrary depth variation which we then apply in a limited way to specific cases.

General Theory

Using the linear shallow-water approximation, the free surface displacement $\eta(x)$ satisfies

$$
\begin{equation*}
\frac{d}{d x}\left(h(x) \frac{d \eta(x)}{d x}\right)+\frac{\omega^{2}}{g} \eta(x)=0 \tag{1}
\end{equation*}
$$

where ω is the radian frequency and we assume the bottom topography $h(x)$, is measured downwards. One of the few examples where the choice of $h(x)$ results in an explicit solution of (1) for $0 \leq x \leq a$ is given by $h(x)=(h x / a)$ where h is constant. Then the substitution $t^{2}=x / a$ reduces (1) to Bessel's equation with solution $J_{0}\left(2 k a(x / a)^{1 / 2}\right)$. The second solution is rejected as being unbounded at $x=0$. Reflection in $x=a$ then provides the solution for the natural modes of oscillation in a wedge-shaped basin of depth h and water-line width $2 a$. The natural frequencies of the oscillations divide into two types, being the roots of $J_{0}(2 k a)=0$ and $J_{1}(2 k a)=0$ corresponding to the modes being odd and even about $x=a$ respectively. Here $k^{2}=\omega^{2} / g h$. A comprehensive review of sloshing problems is given in Faltinsen \& Timokha (2009).

This solution can be used to include a wider class of problems, and also extended to cover a more general $h(x)$. For example if we assume that $h(x)=(h x / a)$ for $0 \leq x \leq a$ and $h(x)=h, a \leq x \leq b, b \geq a$, then reflection in $x=b$ produces a trough of depth h and width $2 b$ at the surface sloping down uniformly to width $2 c=2(b-a)$ at the bottom. The natural frequencies of the oscillations in the trough again divide into two types, corresponding to the odd and even modes about $x=b$ given by $C \sin k(b-x)$ and $C \cos k(b-x)$ respectively. Matching these modes with $\eta(x)$ and $\eta^{\prime}(x)$ across $x=a$ gives

$$
\begin{equation*}
\tan k c=J_{0}(2 k a) / J_{1}(2 k a), \quad=-J_{1}(2 k a) / J_{0}(2 k a) \tag{2}
\end{equation*}
$$

for the odd and even resonant conditions, reducing to the result for the wedge-shaped basin when $c=0$.
For a more general topography we choose $h(x)=h(x / a)^{r}, 0<r<1$ for $0 \leq x \leq a$ which, after reflection about $x=b$, describes a trough with curved ends intersecting the free surface at $x=0,2 b$ vertically. Let $t^{s}=(x / a)$ so that (1) becomes

$$
\frac{d}{d t}\left(t^{s(r-1)+1} \frac{d \eta(t)}{d t}\right) \frac{1}{t^{s-1}}+\kappa^{2} \eta(t)=0
$$

where $\kappa=k a s$. If now we assume $s(r-1)+1=0$ so that $t=(x / a)^{1-r}$, then we have

$$
\frac{d^{2} \eta(t)}{d t^{2}}+\kappa^{2} t^{m} \eta(t)=0, \quad m=r(1-r)^{-1}
$$

with solution (Gradshteyn \& Ryzhik (1965) p.971, 8.491(7)) in terms of x,

$$
\begin{equation*}
\eta(x)=(x / a)^{(1-r) / 2} J_{\nu}\left(2 k a(x / a)^{1-r / 2} /(2-r)\right), \quad \nu=(1-r) /(2-r) \tag{3}
\end{equation*}
$$

for $0<r \leq 1$ where we have chosen the solution which is bounded as $x \rightarrow 0$ since $\eta(x) \sim x^{1-r}, x \rightarrow 0$, the other solution ruled out as being singular at $x=0$. We have

$$
\eta(a)=J_{\nu}(2 k a /(2-r)), \quad 2 a \eta^{\prime}(a)=(1-r) J_{\nu}(2 k a /(2-r))+2 k a J_{\nu}^{\prime}(2 k a /(2-r))
$$

so the resonant frequencies in the trough are given by

$$
\begin{equation*}
\frac{(1-r)}{2 k a}+\frac{J_{\nu}^{\prime}(2 k a /(2-r))}{J_{\nu}(2 k a /(2-r))}=-\cot k c, \quad \text { or } \tan k c \tag{4}
\end{equation*}
$$

For $r=1$ equation (3) reduces to $\eta(x)=J_{0}\left(2 k a(x / a)^{1 / 2}\right)$ and the resonant conditions reduce to $J_{0}^{\prime}(2 k a) / J_{0}(2 k a)=-\cot k c$, or $\tan k c$, in agreement with (2). Finally when $c=b-a=0$ we recover the conditions $J_{0}(2 k a)=0$ and $J_{0}^{\prime}(2 k a)=0$ in agreement with the known wedge-shaped solution.

We can generalise this bottom shape by assuming $h(x)$ is defined by

$$
\begin{equation*}
h(x)=h^{(r)}(x)=h_{1}(1+\beta x / a)^{r}, \quad 0 \leq x \leq a, \quad(1+\beta)^{r}=h_{2} / h_{1} \tag{5}
\end{equation*}
$$

for $0<r \leq 1$ and for $r=2$, so that $h^{(r)}(0)=h_{1}, h^{(r)}(a)=h_{2}$ where $0 \leq h_{1} \leq h_{2} \leq h$. For $r=1$ the bottom slope is constant from a depth h_{1} at $x=0$ to h_{2} at $x=a$. For $0<r<1$ the bottom is a curve with slope at $x=0$ greater and at $x=a$ less than for $r=1$ with the converse being true if $r=2$. We find, after substituting $t=(1+\beta x / a)^{1-r}$ that in terms of x,

$$
\begin{equation*}
\eta(x)=\left((1+\beta x / a)^{(1-r) / 2} Z_{\nu}\left(2 k_{1} a(1+\beta x / a)^{1-r / 2} / \beta(2-r)\right), 0<r \leq 1\right. \tag{6}
\end{equation*}
$$

where $k_{1}^{2} h_{1}=k^{2} h$ and $\nu=(1-r) /(2-r)$, and $Z_{\nu}(z)$ stands for the Bessel functions $J_{\nu}(z), Y_{\nu}(z)$ or any linear combination of them.

If we now assume that for $x \geq a, h^{(r)}(x)=h$, a constant, and $h^{(r)}(x)$ is symmetric about $x=0$, then by reflection the bottom boundary becomes a submerged mount in water of depth h in the shape of a rectangle with vertical sides extending down from a depth h_{2} to h topped by the particular $h(x)$ in $0 \leq x \leq a$ given by (5).

Thus we have a scattering problem for all x so that

$$
\begin{equation*}
\eta(x)=e^{-i k x}+R e^{-i k x} \quad x \geq a, \quad \eta(x)=T e^{-i k(x+a)} \quad x \leq-a . \tag{7}
\end{equation*}
$$

Because of symmetry we can write $\eta(x)=\eta_{0}(x)+\eta_{1}(x)$ where $\eta_{0}(x)$ and $\eta_{1}(x)$ are odd and even respectively about $x=0$ so that $\eta_{0}(0)=0, \eta_{1}^{\prime}(0)=0$. Then it follows that $R=\left(R_{0}+R_{1}\right) / 2$ and $T=\left(R_{0}-R_{1}\right) / 2$ where the $R_{i},(i=0,1)$ satisfy the first equation in (7). Matching $\eta_{i}(x)$ and flux across $x=a$ results in

$$
\begin{gather*}
R_{i}=e^{-2 i \theta_{i}} \quad \text { where } \tan \theta_{i}=\delta_{i}=\left(\frac{h_{2}}{k h}\right) \frac{\eta_{i}^{\prime}(a)}{\eta_{i}(a)} \quad(i=0,1) \quad \text { so that } \tag{8}\\
|R|^{2}=\frac{\left(1+\delta_{0} \delta_{1}\right)^{2}}{\left(1+\delta_{0} \delta_{1}\right)^{2}+\left(\delta_{0}-\delta_{1}\right)^{2}} \quad|T|^{2}=\frac{\left(\delta_{0}-\delta_{1}\right)^{2}}{\left(1+\delta_{0} \delta_{1}\right)^{2}+\left(\delta_{0}-\delta_{1}\right)^{2}} \tag{9}
\end{gather*}
$$

As an example we assume $r=1$ in (6). Then

$$
\begin{equation*}
\eta(x)=Z_{0}\left(\kappa(1+\beta x / a)^{1 / 2}\right), \quad \kappa=2 k_{1} a / \beta \tag{10}
\end{equation*}
$$

and a particular combination of J_{0}, Y_{0} which satisfies $\eta_{0}(0)=0, \eta_{1}^{\prime}(0)=0$ is

$$
\begin{equation*}
\eta_{i}(x)=C_{i}\left(J_{0}(\kappa t) Y_{i}(\kappa)-Y_{0}(\kappa t) J_{i}(\kappa)\right), \quad(i=0,1), t=(1+\beta x / a)^{1 / 2}, \tag{11}
\end{equation*}
$$

Thus from (8) we obtain

$$
\begin{equation*}
\delta_{i}=-\mu\left(\frac{J_{1}(\kappa \alpha) Y_{i}(\kappa)-Y_{1}(\kappa \alpha) J_{i}(\kappa)}{J_{0}(\kappa \alpha) Y_{i}(\kappa)-Y_{0}(\kappa \alpha) J_{i}(\kappa)}\right), \quad \mu=\left(\frac{h_{2}}{h}\right)^{1 / 2} \alpha=(1+\beta)^{1 / 2} \tag{12}
\end{equation*}
$$

As a check we let $\beta \rightarrow 0$ so that $h_{2} \rightarrow h_{1}$ and we have a rectangular mount of width $2 a$ submerged to a depth h_{1} in water of depth h. Then $\mu \rightarrow\left(h_{1} / h\right)^{1 / 2}, \beta \rightarrow 0$ and $\kappa \rightarrow \infty, \kappa \alpha \sim \kappa+k_{1} a$. Then using the results

$$
J_{i}(z) \sim\left(\frac{2}{\pi z}\right)^{1 / 2} \cos (z-\pi(1+2 i) / 4), Y_{i}(z) \sim\left(\frac{2}{\pi z}\right)^{1 / 2} \sin (z-\pi(1+2 i) / 4),(i=0,1)
$$

as $z \rightarrow \infty$, we obtain $\delta_{0} \rightarrow \mu \cot k_{1} a, \quad \delta_{1} \rightarrow-\mu \tan k_{1} a$, so that from (9)

$$
\begin{equation*}
|R|^{2}=\frac{\left(1-\mu^{2}\right)^{2} \sin ^{2} 2 k_{1} a}{4 \mu^{2}+\left(1-\mu^{2}\right)^{2} \sin ^{2} 2 k_{1} a}, \quad|T|^{2}=\frac{4 \mu^{2}}{4 \mu^{2}+\left(1-\mu^{2}\right)^{2} \sin ^{2} 2 k_{1} a} \tag{13}
\end{equation*}
$$

in agreement with Mei (1983) p. 132.
A known solution of (1) is possible for $h^{(r)}(x)$ given by (5) with $r=2$. Note that in this case α, β, κ, and μ are defined differently, so that for example $\alpha=(1+\beta)=\left(h_{2} / h_{1}\right)^{1 / 2}$. Let $(1+\beta x / a)=e^{t}$. Then (1) becomes

$$
\begin{equation*}
\frac{d^{2} \eta(t)}{d t^{2}}+\frac{d \eta(t)}{d t}+\kappa^{2} \eta(t)=0 \tag{14}
\end{equation*}
$$

having the general solution $\eta(t)=e^{-t / 2}(A \sin \lambda t+B \cos \lambda t)$ where $\lambda=\left(\kappa^{2}-1 / 4\right)^{1 / 2}$ and $\kappa=\left(k_{1} a / \beta\right)$ and we assume $k_{1} a>\beta / 2$ since we wish to let $\beta \rightarrow 0$ later.
The odd and even solutions are given by

$$
\begin{equation*}
\eta_{0}(x)=C_{0} e^{-t / 2} \sin \lambda t, \quad \eta_{1}(x)=C_{1} e^{-t / 2}(2 \lambda \cos \lambda t+\sin \lambda t) \tag{15}
\end{equation*}
$$

satisfying $\eta_{0}(0)=0, \eta_{1}^{\prime}(0)=0$ respectively, where $t=\log (1+\beta x / a)$ so that $t=0$ when $x=0$ and $t=\log \alpha$ when $x=a$. Now

$$
\begin{gathered}
\eta_{0}^{\prime}(x)=\beta a^{-1} e^{-t} \eta_{0}^{\prime}(t)=C_{0} \beta a^{-1} e^{-3 t / 2}(\lambda \cos \lambda t-1 / 2 \sin \lambda t) \\
\eta_{1}^{\prime}(x)=\beta a^{-1} e^{-t} \eta_{1}^{\prime}(t)=-2 C_{1} \beta a^{-1} e^{-3 t / 2}\left(\kappa^{2} \sin \lambda t\right)
\end{gathered}
$$

We find from (8) that

$$
\begin{equation*}
\delta_{0}=\gamma_{0}(\cot (\lambda \log \alpha)-1 / 2 \lambda), \quad \delta_{1}=-\gamma_{1} /(\cot (\lambda \log \alpha)+1 / 2 \lambda) \tag{16}
\end{equation*}
$$

where $\gamma_{0}=\alpha \mu^{2}(\lambda \beta) / k a, \gamma_{1}=\gamma_{0}\left(1+1 / 4 \lambda^{2}\right)=\gamma_{0} \kappa^{2} / \lambda^{2}$, and $\mu=\left(h_{1} / h\right)^{1 / 2}$. Substitution in (9) gives

$$
\begin{equation*}
|R|^{2}=\frac{A^{2} \sin ^{2}(\lambda \log \alpha)}{4 \gamma_{0}^{2}+A^{2} \sin ^{2}(\lambda \log \alpha)} \tag{17}
\end{equation*}
$$

where

$$
A=2\left(1-\gamma_{0} \gamma_{1}\right) \cos (\lambda \log \alpha)+\left(1+\gamma_{0} \gamma_{1}\right) \sin (\lambda \log \alpha) / \lambda .
$$

As a check of (17) we let $\beta \rightarrow 0$ so that $h_{2} \rightarrow h_{1}$ and as before we have a rectangular mount of width $2 a$ submerged to a depth h_{1} in water of depth h. Then and $\alpha \rightarrow 1$, whilst $\lambda \beta=\left(\left(k_{1} a\right)^{2}-\beta^{2} / 4\right)^{1 / 2} \rightarrow k_{1} a$, $\lambda \log \alpha \rightarrow k_{1} a$ and $\lambda \rightarrow \infty$. Thus $\gamma_{0}=\gamma_{1} \rightarrow \mu$, and $A \rightarrow 2\left(1-\mu^{2}\right) \cos k_{1} a$ so that $|R|^{2}$ given by (17) again is in agreement with (13). If in addition we let $h_{1}=h_{2} \rightarrow h$ so that the obstruction disappears, then $\mu \rightarrow 1$ and $A \rightarrow 0$ and hence $|R| \rightarrow 0$ as expected.
Notice that for the rectangular mount $R=0$ when $\sin 2 k_{1} a=0$ which Mei (1983) p. 133 explains as contructive inteference between the waves generated at $x= \pm a$. It is not clear from (17) whether this explains in this case why $R=0$ when $\sin \lambda \log \alpha=0$ where $A \neq 0$, or when $A=0$.

A different scattering problem arises if we assume $h(x)=h_{1}, x \leq 0$ with a general $h(x)$ for $0 \leq x \leq a$ and $h(x)=h, x \geq a$ as before, so that we have the scattering problem

$$
\begin{equation*}
\eta(x)=e^{i k_{1} x}+R e^{-i k_{1} x}, x \leq 0, \quad \eta(x)=T e^{i k(x-a)}, x \geq a \tag{18}
\end{equation*}
$$

For $0 \leq x \leq a$ the equation (1) will, for a wide class of functions $h(x)$, have a general solution of the form $\eta(x)=A \eta_{0}(x)+B \eta_{1}(x)$ being a linear combination of two independent solutions which for ease of calculation we shall choose to be the functions $\eta_{0}(x)$ and $\eta_{1}(x)$ satisfying $\eta_{0}(0)=0$ and $\eta_{1}^{\prime}(0)=0$ as before and which can be shown to satisfy the Wronskian-type relation

$$
\begin{equation*}
\eta_{1}(x) \eta_{0}^{\prime}(x)-\eta_{0}(x) \eta_{1}^{\prime}(x)=\left(h_{1} / h(x)\right) \eta_{1}(0) \eta_{0}^{\prime}(0) \tag{19}
\end{equation*}
$$

To simplify the analysis, and without loss of generality, we also assume $\eta_{0}^{\prime}(0)=\eta_{1}(0)=1$. Then matching $\eta(x)$ and flux across $x=0$ and $x=a$ gives

$$
1+R=B, \quad i k_{1}(1-R)=A, \quad T=A \eta_{0}(a)+B \eta_{1}(a), \quad i k h T=h_{2}\left(A \eta_{0}^{\prime}(a)+B \eta_{1}^{\prime}(a)\right)
$$

It follows after some algebra, which involves use of the relation (19) when $x=a$, that

$$
\begin{equation*}
R=\left(\nu_{0}-i \nu_{1} / k_{1}\right) /\left(\nu_{0}+i \nu_{1} / k_{1}\right), \quad T=2\left(h / h_{2}\right)\left(\nu_{0}+i \nu_{1} / k_{1}\right) \tag{20}
\end{equation*}
$$

where $\nu_{i}=\eta_{i}^{\prime}(a)-i k \eta_{i}(a)\left(h / h_{2}\right),(i=0,1)$, and as before $\mu=\left(h_{1} / h\right)^{1 / 2}$. Further manipulation confirms that the energy relation $\mu\left(1-|R|^{2}\right)=|T|^{2}$ is satisfied.
As a check on the result (20) we assume $h_{2}=h_{1}$ so that we have a vertical step down at $x=a$ from depth h_{1} to h. Then $\eta_{0}(x)=k_{1}^{-1} \sin k_{1} x, \eta_{1}(x)=\cos k_{1} x$, satisfying $\eta_{0}^{\prime}(0)=\eta_{1}(0)=1, \eta_{0}(0)=\eta_{1}^{\prime}(0)=0$, and we find after some algebra that

$$
R=-\frac{(1-\mu)}{(1+\mu)} e^{2 i k_{1} a}, \quad T=\frac{2}{1+\mu} e^{i k_{1} a}
$$

in agreement with Mei (1983) p.119.
Finally we consider the scattering problem obtained by assuming that $h(x)=h_{1}, x \leq 0$ and that $h(x) \rightarrow \infty, x \geq 0$ noting that this would clearly violate shallow-water theory! The two solutions of (1), now valid in $x>0$, need to be replaced by a single solution $\eta_{\text {out }}(x)$ describing a solution radiating outwards in $x>0$. Simple matching gives

$$
\begin{equation*}
\frac{1+R}{1-R}=-\frac{i k_{1} \eta_{\text {out }}(0)}{\eta_{\text {out }}^{\prime}(0)}=>R=-\left(\frac{\eta_{\text {out }}^{\prime}(0)+i k \eta_{\text {out }}(0)}{\eta_{\text {out }}^{\prime}(0)-i k \eta_{\text {out }}(0)}\right) \tag{21}
\end{equation*}
$$

As an example with $h(x)=h_{1}(1+\beta x / a)^{r}, x \geq 0$

$$
\begin{equation*}
\eta_{\text {out }}(x)=\left((1+\beta x / a)^{(1-r) / 2} H_{\nu}^{(1)}\left(2 k_{1} a(1+\beta x / a)^{1-r / 2} / \beta(2-r)\right)\right. \tag{22}
\end{equation*}
$$

for $0<r \leq 1$, where $H_{\nu}^{(1)}=J_{\nu}+Y_{\nu}$, and if $r=2$,

$$
\begin{equation*}
\eta_{\text {out }}(x)=(1+\beta x / a)^{-1 / 2} e^{i \lambda \log (1+\beta x / a)} \tag{23}
\end{equation*}
$$

Conclusion

A solution of the linearised shallow-water equation for a more general bottom topography is given which is believed to be new. The solution provides the conditions for resonant oscillations in both a basin and a trough having curved sides. General expressions for the solution of a number of scattering problems are developed, mostly in terms of odd and even solutions to the shallow-water equation once they are known. These solutions are presented in a small number of cases which will enable reflection and transmission coefficients to be computed.

References

Faltinsen, O. M. \& Timokha, A. N. (2009) Sloshing, Cambridge University Press. Gradshteyn, I. S. \& Ryzhik, I, M. (1965) Tables of Integrals, Series, and Products, Academic Press. Mei, C. C. (1983) The Applied Dynamics of Ocean Surface Waves, John Wiley \& Sons.

