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1. Introduction

Diffraction radiation of regular waves by offshore structures is usually considered within the framework of the classical
Green-function and boundary-integral method, also called panel method, related to potential-flow theory for deep water and
the more general and considerably more difficult case of uniform finite water depth analyzed in this study.

Within this classical theoretical framework, the flow around an offshore structure is represented by means of distributions
of singularities (sources and dipoles) over the surface of the offshore structure. Accurate and efficient numerical evaluation
of flows created by (typically polynomial, notably constant, linear or quadratic) distributions of singularities over (flat or
curved) panels of arbitrary shape (notably triangular and quadrilateral) approximating the surface of an offshore structure
is then a major element of every panel method. This core element of the Green-function and boundary-integral method
is crucial as it largely determines the accuracy and the efficiency of a panel method, and is considered in this study for
diffraction radiation of regular waves in finite water depth, including the special case of deep water.

1.1 The classical direct Green-function method

The ‘direct Green-function method’, in which the Green function and its derivatives are first evaluated and subsequently
integrated over the panels that approximate the surface of the structure, is commonly adopted for wave diffraction radiation
by offshore structures. Accordingly, the corresponding Green function has been extensively studied, as is reviewed in [1-4],
especially in the simpler case of deep water.

However, the Green function for diffraction radiation of regular waves is considerably more complicated in water of finite
depth than in deep water. In particular, G and ∇G are functions of two variables (nondimensional coordinates) in deep
water, but are functions of four variables (the water depth d, the horizontal distance h =

√
(x− ξ)2 + (y − η)2 between the

point source ξ and the flow-field point x and the vertical coordinates z and ζ ) in finite water depth.
Moreover, the Green function G is usually decomposed into a wave component GW and a local-flow component GL that

represent the circular waves created by the pulsating source or a non-oscillatory local flow. Although the sum GW+GL is a
smooth function, the components GW and GL are not smooth above the source point.

Lastly, the local-flow components GL and ∇GL have complicated singularities at the mirror image of the point source
about the undisturbed free surface. E.g., the deep-water local-flow component GL includes a logarithmic singularity [1,2] and
numerical integrations of the singular functions GL and ∇GL over a panel require a complicated special treatment; e.g. [5].

Thus, the ‘direct Green-function method’, although widely used and well established in offshore hydrodynamics, involves
significant mathematical and numerical complexities, especially for the case of finite water-depth considered in this study.

1.2 The Fourier-Kochin method

An analytical representation of the flow created by a general distribution of singularities over a hull-surface panel is given
in this study for wave diffraction radiation by offshore structures in finite water depth. This flow-representation is based on
the Fourier-Kochin (FK) approach, in which space-integration over the panel is performed first and Fourier-integration is
performed subsequently, unlike the common ‘direct Green-function method’ in which the Green function (defined via a Fourier
integration) is evaluated first and subsequently integrated over the panel. The mathematical and numerical complexities
associated with the evaluation of the Green function G and its derivatives are then avoided within the FK approach, in
which numerical evaluation of G and ∇G is bypassed and the flow potential due to a distribution of sources and dipoles
(singularities) is evaluated directly, as is also explained in [6-9] and other studies.

A compelling advantage of this approach is that the space-integration over a panel merely amounts to integrating an
elementary (exponential-trigonometric) function, a trivial task that can be performed very accurately and efficiently (ana-
lytically for polynomial distributions of sources and dipoles over flat panels).

However, as is shown in Section 3, the Fourier-Kochin approach requires evaluation of a singular double Fourier integral
that accounts for free-surface effects, evidently a nontrivial task. This task is analyzed in [6] for an arbitrary distribution of
singularities and arbitrary dispersion functions related to particular classes of dispersive waves. Applications of the general
analysis given in [6] to steady ship waves and wave diffraction radiation by offshore structures in deep water given in [6], to
ship motions in deep water given in [7,8] and to diffraction radiation of regular waves by offshore structures in finite water
depth given in this study yield analytical representations of flows created by general distributions of singularities for specific
dispersion relations and corresponding particular classes of flows in ship and offshore hydrodynamics.

The resulting analytical flow-representation for wave diffraction radiation by offshore structures in finite water depth
given in the study provides a mathematically-exact smooth decomposition of free-surface effects into a nonoscillatory local
flow and waves. The waves in this flow decomposition are defined by a regular single Fourier integral, and the local flow is
given by a double Fourier integral with a smooth integrand that only involves ordinary functions and is dominant within a
compact region near the origin of the Fourier plane. Illustrative numerical applications for typical distributions of sources and
dipoles over a panel show that the flow-representation given in the study is well suited for practical numerical evaluations.



2. Rankine-Fourier decomposition of the Green function

The Green function associated with diffraction radiation of regular waves of frequency ω in water of uniform finite depth
D and large horizontal extent is now considered. The gravitational acceleration is denoted as g. A Cartesian system of
coordinates (X,Y, Z) is used. The Z axis is vertical and points upward, and the undisturbed free surface is taken as the
plane Z = 0. The nondimensional coordinates x, water depth d and frequency f are defined as

x ≡ (x, y, z) ≡ (X,Y, Z)/L , d ≡ D/L and f ≡ ω
√
L/g . (1)

The reference length L may be taken as a characteristic length Ls of a structure, or as the water depth D or the length g/ω2

related to the wavelength of the waves created by the body. The choice of reference length L = g/ω2 yields f ≡ 1.
The Green function G(x,ξ ;f, d) represents the potential of the flow created at a point x ≡ (x, y,−d ≤ z ≤ 0) ≡

(h cosψ, h sinψ, z) by a pulsating source located at a point ξ ≡ (ξ, η,−d < ζ < 0), and can be expressed as

4πG = GS+GF (2)

where GS is expressed in terms of elementary free-space singularities (Rankine sources) and the component GF is given by
a singular double Fourier integral. Alternative Rankine components GS in the Rankine-Fourier decomposition (2) have been
used in the literature. The Rankine component GS in (2) is chosen here as

GS= −1/r −1/rd −1/r′−1/r′d + 2/rf + 2/rfd where r ≡
√
ρ2 + (z − ζ )2 , rd ≡

√
ρ2 + (z + ζ + 2d)2 , (3a)

r′≡
√
ρ2 + (z + ζ )2 , r′d ≡

√
ρ2 + (z − ζ − 2d)2 , rf ≡

√
ρ2 + (z + ζ −1/f2)2 , rfd ≡

√
ρ2 + (z − ζ−1/f2− 2d)2 (3b)

with ρ ≡
√

(x− ξ )2 + (y − η)2. The Fourier component GF in (2) is given by

GF =
f2

π

∫ π

−π
dγ

∫ ∞
0

dk
AGE e ikh cos (γ−ψ)

f2− k tanh(kd) + iεf
where E ≡ e− ik (ξ cosγ+η sinγ) cosh[k(ζ+ d)]/(ekd/2) , (4a)

AG ≡ (k/f2+1) cosh[k(z + d)]/ [2cosh(kd)] + [1− k tanh(kd)/f2 ] (1/2− e−k/f
2

) ekz (4b)

and ε = +0. In the Fourier plane (k, γ) where −π ≤ γ ≤ π, the dispersion relation f2− k tanh(kd) = 0 defines a single
dispersion circle k = k∗ where k∗ is the positive real root of the dispersion equation

k∗ tanh(k∗d) = f2 . (5)

Expression (4b) for the amplitude function AG that corresponds to the Rankine component GS defined by (3) shows that
one has AG→ 0 as k → 0 and AG→ 1 as k →∞ for z = 0, whereas the amplitude function that corresponds to the Rankine
component GS = −1/r −1/rd widely used in the literature does not vanish at k = 0 and is unbounded as k → ∞ if z = 0.
The Rankine component GS given by (3) is then clearly preferable to the classical Rankine component given in the literature.

Indeed, the Rankine-Fourier decomposition (2) where the Rankine component GS is taken as (3) and the Fourier com-
ponent GF is given by (4) is a major element of the flow-representation given in the study, and differs from the similar
decompositions given in the literature.

3. Fourier-Kochin representation of the free-surface flow created by a general distribution of singularities

The Green-function and boundary-integral method requires evaluation of the flow potentials

φp(x) =

∫
Hp

{
σ(ξ)G(x,ξ)

δ(ξ) n(ξ) ·∇ξG(x,ξ)

}
da(ξ) , where ∇ξ≡ (∂/∂ξ, ∂/∂η, ∂/∂ζ ) , (6)

associated with distributions of sources and dipoles, with densities denoted as σ or δ in (6), over (flat or curved) panels Hp
of various shapes (notably triangle or quadrilateral) that are used to approximate the surface of a body (offshore structure
or ship). Accurate evaluation of the flow potential φp defined by (6) is a basic and crucial core issue of the panel method.

The Rankine-Fourier decomposition (2) of G shows that the flow potential φp(x) defined by (6) can be expressed as

φp(x) = φSp(x) + φFp (x) (7)

where φSp(x) and φFp (x) correspond to the Rankine and Fourier components GS or GF in (2).
The Rankine potential φSp in (7) can be evaluated via cubature formulae without difficulties, and is then ignored hereafter.

However, evaluation of the contribution of the Fourier component GF in (2) is a nontrivial task because the Fourier component
GF defined by (4) and its gradient ∇ξGF are relatively difficult to evaluate accurately and efficiently, especially for finite
water depth, and moreover involve complicated singularities that are difficult to integrate accurately over a panel [5].

An alternative method for evaluating the Fourier component φFp that corresponds to the flow potential φp defined by (6)
is then considered hereafter. This method is based on the Fourier-Kochin method, as is now explained.

Expressions (4) for the Fourier component GF in the representation (2) of G show that the flow potential φFp (x) associated
with a given distribution of singularities (sources or dipoles) over a panel Hp centered at ξp ≡ (ξp , ηp , ζp) is given by

4πφFp (x) =
f2

π

∫ π

−π
dγ

∫ ∞
0

dk
AGAp e

ikhp cos (γ−ψp)

f2− k tanh(kd) + iεf
(8)

where hp ≡
√

(x− ξp)2 + (y − ηp)2 , (cosψp , sinψp) ≡ (x− ξp , y−ηp)/hp and AG is defined by (4b). Moreover, Ap is given by

Ap =

∫
Hp

{
σ(ξ)

k ap δ(ξ)

}
Ep da(ξ) where ap ≡ nz tanh[k(ζ + d)]− i (nxcosγ + ny sinγ) (9a)



and Ep ≡ e− ik [(ξ−ξp) cosγ+(η−ηp) sinγ)] cosh[k(ζ+ d)]/(ekd/2) . (9b)

The amplitude (Kochin) functions Ap defined by (9) are determined via integrations of the elementary wave function Ep
over the panel Hp . Expression (9b) shows that Ep does not oscillate rapidly for a panel of reasonable size. The function Ap
can then be evaluated accurately and efficiently for general distributions of sources or dipoles with densities σ or δ.

Indeed, the surface integration of the slowly-varying smooth elementary functions σ Ep or kap δ Ep over a panelHp required
in (9a) is incomparably simpler than the integration of the highly singular functions GF and ∇ξGF required in (6) associated
with the direct Green-function method, and this basic difference is a compelling advantage of the Fourier-Kochin approach.

4. Practical analytical representation of the flow created by a general distribution of singularities

For simplicity, the subscript p in (8) is ignored in this section, where the flow potential φF defined by (8) is considered for
an arbitrary amplitude (Kochin) function A. The integrand of the double Fourier integral (8) is singular at the dispersion
curve f2− k tanh(kd) = 0, and accurate and efficient evaluation of this singular double Fourier integral is then nontrivial.

This crucial issue is considered in [9]. Specifically, the singular double Fourier integral (8) is decomposed as

4πφF(x) = φW(x) + φL(x) (10)

where φW represents the waves that are contained in the flow potential φF, and φL is a non-oscillatory local flow that vanishes
rapidly in the far field. Moreover, the integrand of the double Fourier integral φL is smooth everywhere (notably at the
dispersion circle), decays rapidly as the wavenumber k →∞ and is dominant at or near the origin k = 0 of the Fourier plane.

4.1 Wave potential φW

The wave component φW in the flow decomposition (10) of the flow potential φF is given by a single Fourier integral
along the dispersion circle k = k∗. One has

φW

f2
≡ − iP

∫ ψ+π/2

ψ−π/2
[(1 + Θ)A∗e iϕ+ (1−Θ)A∗e−iϕ ]dγ where P ≡ e k

∗d cosh[k∗(z + d)]

2 sinh2(k∗d) + 2f2d
, (11a)

Θ ≡ erf (ϕ/µ∗) , ϕ ≡ k∗h cos(γ − ψ) , A∗≡ A(k= k∗, γ) (11b)

and an overline means complex conjugate. One has 0 ≤ Θ ≤ 1 within the integration range ψ − π/2 ≤ γ ≤ ψ + π/2.

In the deep-water limit d → ∞, one has k∗ = f2 and P = ef
2z, and expressions (11) agree with the expressions for the

wave potential φW given in [6].

4.2 Wave component in the Green function

In the limit µ∗ = +0 and in the special case A(k= k∗, γ) = cosh[k∗(ζ+ d)]/(ek
∗d/2) that corresponds to a point source

located at ξ ≡ (0, 0, ζ ), the wave component φW in (11) becomes

φW/f2 = 2πAW [H̃0(k∗h)− iJ0(k∗h)] where AW ≡ cosh[k∗(z + d)] cosh[k∗(ζ+ d)]/ [sinh2(k∗d) +f2d ] (12)

This expression agrees with the expression for the wave component in the Green function associated with diffraction radiation
of regular waves in finite water depth.

In deep water, one has AW = 1, and expression (12) agrees with the wave component of the Green function given in [1,2].

4.3 Local-flow potential φL

The local-flow potential φL that corresponds to the potential φF determined by the singular double Fourier integral (8)
is given by a regular double Fourier integral

φL

f2
≡ 2

π
Re

∫ ψ+π/2

ψ−π/2
dγ

∫ ∞
0

dw AR(w, γ) e iwk∗h cos(γ−ψ) where (13a)

AR =
AGA

f2/k∗− w tanh(wk∗d)
− P

[
e−µ

2
∗ (1−w)2/4

1− w A∗+
e−µ

2
∗ (1+w)2/4

1+ w
A∗

]
with (13b)

AG≡ (wk∗/f2 +1) cosh[wk∗(z + d)]/ [2cosh(wk∗d)] + (1/2− e−wk
∗/f2) [1− (wk∗/f2) tanh(wk∗d)] ewk

∗z . (13c)

Moreover, one has A ≡ A(w, γ) and A∗ ≡ A(w = 1, γ) in (13b), P in (13b) is given by (11a), and w ≡ k/k∗ in (13). The
function AR∗ ≡ AR(w = 1, γ) is finite at the dispersion circle w = 1 and given by

AR∗ = −P ( Γ̂A∗+ e−µ
2
∗ A∗/2 +A∗w ) + (k∗/f2)(1/2− e−k

∗/f2)A∗ek
∗z (13d)

where Γ̂ ≡ k∗(z + d) tanh[k∗(z + d)] +1/(1+f2/k∗)− f2d cosh2(k∗d)/ [sinh2(k∗d) +f2d ] and A∗w ≡ Aw(w = 1, γ).
In the deep-water limit d→∞, one has w ≡ k/f2 and

AR =
AGA

1−w − e
f2z

[
e−µ

2
∗ (1−w)2/4

1− w A∗+
e−µ

2
∗ (1+w)2/4

1+ w
A∗

]
where AG≡ [1+ (w−1) e−w ] ewf

2z .

At the dispersion circle w = 1, the function AR∗ ≡ AR(w = 1, γ) is given by AR∗ = − [(e−1+f2z )A∗+ e−µ
2
∗ A∗/2 +A∗w ] ef

2z.
The foregoing expressions for deep water agree with the expressions given in [6].

Expressions (11b) and (13b) involve a parameter µ∗ . Thus, both the wave component φW and the local-flow component
φL in the waves and local-flow decomposition (11) and (13) depend on µ∗ , and the flow-representation (11) and (13) there-
fore defines a family of alternative decompositions into waves and local flows; i.e., different choices of µ∗ yield alternative



Figure 1: The top row depicts contour plots of the flow potentials ReφWσ (left column), φLσ , Re (φWσ + φLσ ), ImφWσ (right) associated with a

source distribution for µ∗ = 0.5 and f2d = 1 within the region k∗hp ≡ k∗ [(x − ξp)2 + (y − ηp)2]1/2 ≤ 10 with k∗z = −π/30. The bottom row

similarly depicts the potentials ReφWδ (left), φLδ , Re (φWδ + φLδ ), ImφWδ (right) for a dipole distribution.

decompositions of the flow potential φF into a wave potential φW and a local-flow potential φL. Indeed, flow decompositions
into wave and local-flow components are not unique.

The flow-representation given by (10), (11) and (13) does not involve approximations, i.e. is mathematically exact, and
the flow potential φF given by (8) is then independent of the parameter µ∗ that appears in both the wave potential φW and
the local-flow potential φL. The parameter µ∗ can then be chosen arbitrarily from a strictly mathematical standpoint.

However, from the practical standpoint of numerical evaluation, the parameter µ∗ must not be chosen too large (because
the local-flow potential φL contains waves within a large region if µ∗ is large) or too small (to avoid excessively sharp variations
of the wave and local-flow potentials φW and φL at the origin). The numerical study for typical distributions of sources and
dipoles over a panel to be presented at the Workshop shows that the choice µ∗ ≈ 0.5 yields a smooth flow decomposition
in which the local-flow potential φL is non-oscillatory and mostly significant within a relatively small near-field region. This
choice is consistent with the mathematical and numerical studies reported in [6-9], and may be considered as nearly optimal.

5. Numerical illustration and verification

For purposes of illustration and verification, uniform distributions of sources and dipoles over a rectangular panel Hp
located in the vertical plane η = ηp and defined as −δξ ≤ ξ − ξp ≤ δξ and −δζ ≤ ζ ≤ 0 are considered. The top side of the
panel Hp touches the free surface ζ = 0. One has (nx, ny, nz) = (0, 1, 0) on Hp . The densities σ and δ of the distributions
of sources and dipoles are taken equal to 1/(2 δξ δζ), which corresponds to a unit source or dipole uniformly distributed over
the area of Hp . The length and the height of Hp are chosen as δξ = Cx/k∗ and δζ = Cz/k∗ with Cx= π/10 and Cz= π/15.

The flow potentials associated with the source and dipole distributions are depicted in Fig.1. Additional numerical
illustrations and verifications will be reported at the Workshop.
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